A Vision Transformer-based Masked Autoencoder Variational Autoencoder (MAE-VAE) for medical image analysis, specifically designed for T2-weighted MRI processing.
- Vision Transformer (ViT) based architecture
- Masked autoencoding with variational inference
- NIfTI file support for medical imaging
- Slice-wise and volume-wise processing
- Advanced visualization tools
git clone https://github.com/Computational-Imaging-LAB/T2_FoundationModel.git
cd T2_FoundationModel
pip install -r requirements.txt
python train.py --train_dir /path/to/train/nifti --val_dir /path/to/val/nifti
python inference.py --nifti_path /path/to/nifti/file.nii.gz
Documentation is available at docs/build/html/index.html
. To build the documentation:
cd docs
make html
MIT License
If you use this code in your research, please cite:
@software{t2_foundation_model,
title = {T2 Foundation Model},
author = {Computational Imaging Lab},
year = {2025},
url = {https://github.com/Computational-Imaging-LAB/T2_FoundationModel}
}