-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
199 lines (170 loc) · 6.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""
Training Module for MAE-VAE Model.
This module handles the training of the MAE-VAE model on NIfTI medical image data.
It includes functionality for data loading, model initialization, training loop execution,
and checkpoint management.
"""
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from mae_vae import MAEVAEViT, MAEVAETrainer
from nifti_dataset import get_nifti_dataloader
from tqdm import tqdm
import math
import os
import argparse
def parse_args():
"""Parse command line arguments.
Returns:
argparse.Namespace: Parsed command-line arguments.
"""
parser = argparse.ArgumentParser(description='Train MAE-VAE model on NIfTI data')
parser.add_argument('--train_dir', type=str, required=True,
help='Directory containing training NIfTI files')
parser.add_argument('--val_dir', type=str, required=True,
help='Directory containing validation NIfTI files')
parser.add_argument('--batch_size', type=int, default=64,
help='Batch size for training')
parser.add_argument('--learning_rate', type=float, default=3e-4,
help='Learning rate')
parser.add_argument('--num_epochs', type=int, default=100,
help='Number of epochs to train')
parser.add_argument('--image_size', type=int, default=224,
help='Input image size')
parser.add_argument('--slice_axis', type=int, default=2,
help='Axis along which to extract slices (0: sagittal, 1: coronal, 2: axial)')
return parser.parse_args()
def main():
"""Main training function."""
args = parse_args()
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Data transformations
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomAffine(degrees=10, translate=(0.1, 0.1)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Create data loaders
train_loader = get_nifti_dataloader(
nifti_dir=args.train_dir,
batch_size=args.batch_size,
image_size=args.image_size,
slice_axis=args.slice_axis,
transform=transform,
shuffle=True,
num_workers=4
)
val_loader = get_nifti_dataloader(
nifti_dir=args.val_dir,
batch_size=args.batch_size,
image_size=args.image_size,
slice_axis=args.slice_axis,
transform=transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
shuffle=False,
num_workers=4
)
# Model initialization
model = MAEVAEViT(
image_size=args.image_size,
patch_size=16,
embed_dim=512,
depth=6,
num_heads=8,
decoder_dim=384,
decoder_depth=4,
mask_ratio=0.75,
latent_dim=256
).to(device)
# Optimizer setup
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
weight_decay=0.05,
betas=(0.9, 0.95)
)
# Learning rate scheduler
warmup_epochs = 5
def get_lr_factor(epoch):
"""Calculate learning rate factor.
Args:
epoch (int): Current epoch number.
Returns:
float: Learning rate factor.
"""
if epoch < warmup_epochs:
return epoch / warmup_epochs
return 0.5 * (1 + math.cos(math.pi * (epoch - warmup_epochs) / (args.num_epochs - warmup_epochs)))
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, get_lr_factor)
# Initialize trainer
trainer = MAEVAETrainer(
model=model,
optimizer=optimizer,
device=device,
kld_weight=0.05
)
# Create directory for saving models and logs
os.makedirs('checkpoints', exist_ok=True)
# Training loop
best_val_loss = float('inf')
train_losses = []
val_losses = []
for epoch in range(args.num_epochs):
# Training phase
model.train()
epoch_train_losses = []
pbar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{args.num_epochs} [Train]')
for batch in pbar:
metrics = trainer.train_step(batch)
epoch_train_losses.append(metrics['loss'])
pbar.set_postfix({
'loss': f"{metrics['loss']:.4f}",
'recon': f"{metrics['recon_loss']:.4f}",
'kld': f"{metrics['kld_loss']:.4f}"
})
# Validation phase
model.eval()
epoch_val_losses = []
with torch.no_grad():
for batch in tqdm(val_loader, desc=f'Epoch {epoch+1}/{args.num_epochs} [Val]'):
metrics = trainer.validate_step(batch)
epoch_val_losses.append(metrics['loss'])
# Calculate average losses
avg_train_loss = sum(epoch_train_losses) / len(epoch_train_losses)
avg_val_loss = sum(epoch_val_losses) / len(epoch_val_losses)
train_losses.append(avg_train_loss)
val_losses.append(avg_val_loss)
# Update learning rate
scheduler.step()
current_lr = optimizer.param_groups[0]['lr']
print(f'Epoch {epoch+1}/{args.num_epochs}:')
print(f'Average Train Loss: {avg_train_loss:.4f}')
print(f'Average Val Loss: {avg_val_loss:.4f}')
print(f'Learning Rate: {current_lr:.6f}')
# Save checkpoint
checkpoint_path = os.path.join('checkpoints', f'checkpoint_epoch_{epoch+1}.pth')
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'train_loss': avg_train_loss,
'val_loss': avg_val_loss,
}, checkpoint_path)
# Save best model
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'val_loss': best_val_loss,
'train_losses': train_losses,
'val_losses': val_losses,
}, 'best_model.pth')
print(f'Saved new best model with validation loss: {best_val_loss:.4f}')
if __name__ == '__main__':
main()