-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmae_vae.py
481 lines (378 loc) · 15 KB
/
mae_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
"""
MAE-VAE Vision Transformer Implementation.
This module implements a Masked Autoencoder Variational Autoencoder using Vision Transformer
architecture. It combines the benefits of masked prediction tasks with variational inference
for robust representation learning.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat, rearrange
import numpy as np
class PatchEmbedding(nn.Module):
"""2D Image to Patch Embedding.
Args:
image_size (int): Input image size.
patch_size (int): Patch size for tokenization.
in_channels (int): Number of input channels.
embed_dim (int): Embedding dimension.
Attributes:
num_patches (int): Total number of patches.
proj (nn.Conv2d): Projection layer for patch embedding.
"""
def __init__(self, image_size=224, patch_size=16, in_channels=3, embed_dim=768):
super().__init__()
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = (image_size // patch_size) ** 2
self.projection = nn.Sequential(
nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size),
Rearrange('b e h w -> b (h w) e'),
)
self.cls_token = nn.Parameter(torch.randn(1, 1, embed_dim))
self.pos_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, embed_dim))
def forward(self, x):
"""Forward pass.
Args:
x (torch.Tensor): Input tensor of shape (B, C, H, W).
Returns:
torch.Tensor: Patch embeddings of shape (B, N, D).
"""
b = x.shape[0]
x = self.projection(x)
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b=b)
x = torch.cat([cls_tokens, x], dim=1)
x = x + self.pos_embedding
return x
class MultiHeadAttention(nn.Module):
"""Multi-head Self Attention mechanism.
Args:
embed_dim (int): Input dimension.
num_heads (int): Number of attention heads.
"""
def __init__(self, embed_dim, num_heads):
super().__init__()
assert embed_dim % num_heads == 0, 'Embedding dimension must be divisible by number of heads'
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scale = self.head_dim ** -0.5
self.qkv = nn.Linear(embed_dim, embed_dim * 3)
self.proj = nn.Linear(embed_dim, embed_dim)
def forward(self, x):
"""Forward pass.
Args:
x (torch.Tensor): Input tensor of shape (B, N, D).
Returns:
torch.Tensor: Attended tensor of shape (B, N, D).
"""
B, N, C = x.shape
assert C == self.embed_dim, f'Input embedding dim {C} does not match layer embedding dim {self.embed_dim}'
# (B, N, C) -> (B, N, 3C) -> (B, N, 3, H, D)
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
# (B, N, 3, H, D) -> (3, B, H, N, D)
qkv = qkv.permute(2, 0, 3, 1, 4)
# Split into q, k, v
q, k, v = qkv.unbind(0) # Each has shape (B, H, N, D)
# Attention
attn = (q @ k.transpose(-2, -1)) * self.scale # (B, H, N, N)
attn = attn.softmax(dim=-1)
# Combine heads
x = (attn @ v) # (B, H, N, D)
x = x.transpose(1, 2) # (B, N, H, D)
x = x.reshape(B, N, C) # (B, N, C)
# Output projection
x = self.proj(x)
return x
class TransformerEncoder(nn.Module):
"""Transformer Block.
Args:
embed_dim (int): Input dimension.
num_heads (int): Number of attention heads.
mlp_ratio (float): MLP hidden dimension ratio.
dropout (float): Dropout rate.
"""
def __init__(self, embed_dim, num_heads, mlp_ratio=4.0, dropout=0.1):
super().__init__()
self.norm1 = nn.LayerNorm(embed_dim)
self.attn = MultiHeadAttention(embed_dim, num_heads)
self.norm2 = nn.LayerNorm(embed_dim)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, int(embed_dim * mlp_ratio)),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(int(embed_dim * mlp_ratio), embed_dim),
nn.Dropout(dropout)
)
def forward(self, x):
"""Forward pass.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor.
"""
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class MAEVAEViT(nn.Module):
"""Masked Autoencoder Variational Autoencoder with Vision Transformer.
Args:
image_size (int): Input image size.
patch_size (int): Patch size for tokenization.
in_channels (int): Number of input channels.
embed_dim (int): Embedding dimension.
depth (int): Number of transformer blocks.
num_heads (int): Number of attention heads.
decoder_dim (int): Decoder embedding dimension.
decoder_depth (int): Number of decoder transformer blocks.
mask_ratio (float): Ratio of patches to mask.
latent_dim (int): Dimension of latent space.
"""
def __init__(
self,
image_size=224,
patch_size=16,
in_channels=3,
embed_dim=768,
depth=12,
num_heads=12,
decoder_dim=512,
decoder_depth=8,
mask_ratio=0.75,
latent_dim=256
):
super().__init__()
self.patch_embed = PatchEmbedding(image_size, patch_size, in_channels, embed_dim)
self.num_patches = self.patch_embed.num_patches
self.mask_ratio = mask_ratio
self.patch_size = patch_size
# Encoder
self.encoder_layers = nn.ModuleList([
TransformerEncoder(embed_dim, num_heads)
for _ in range(depth)
])
# VAE components
self.fc_mu = nn.Linear(embed_dim, latent_dim)
self.fc_var = nn.Linear(embed_dim, latent_dim)
# Decoder
self.decoder_embed = nn.Linear(latent_dim, decoder_dim)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_dim))
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, decoder_dim))
self.decoder_layers = nn.ModuleList([
TransformerEncoder(decoder_dim, num_heads)
for _ in range(decoder_depth)
])
self.decoder_pred = nn.Linear(decoder_dim, patch_size * patch_size * in_channels)
self.initialize_weights()
def initialize_weights(self):
"""Initialize model weights."""
# Initialize patch embeddings and position embeddings
pos_embed = self.patch_embed.pos_embedding
decoder_pos_embed = self.decoder_pos_embed
torch.nn.init.normal_(pos_embed, std=.02)
torch.nn.init.normal_(decoder_pos_embed, std=.02)
# Initialize mask token
torch.nn.init.normal_(self.mask_token, std=.02)
# Apply layer-wise scaling to initialization
self.apply(self._init_weights)
def _init_weights(self, m):
"""Initialize layer weights.
Args:
m (nn.Module): Layer to initialize.
"""
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def random_masking(self, x, mask_ratio):
"""Perform random masking by per-sample shuffling.
Args:
x (torch.Tensor): Input tensor.
mask_ratio (float): Ratio of patches to mask.
Returns:
tuple: Masked tensor, mask, and ids_restore.
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# Sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
# Keep the first len_keep tokens
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# Generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def reparameterize(self, mu, logvar):
"""Reparameterization trick.
Args:
mu (torch.Tensor): Mean tensor.
logvar (torch.Tensor): Log variance tensor.
Returns:
torch.Tensor: Sampled latent vector.
"""
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward_encoder(self, x, mask_ratio):
"""Forward pass through encoder.
Args:
x (torch.Tensor): Input tensor.
mask_ratio (float): Ratio of patches to mask.
Returns:
tuple: Latent representation and mask.
"""
# Patch embedding
x = self.patch_embed(x)
# Masking
x_masked, mask, ids_restore = self.random_masking(x, mask_ratio)
# Apply Transformer encoder
for layer in self.encoder_layers:
x_masked = layer(x_masked)
# Get latent representations
x_masked_mean = x_masked.mean(dim=1) # Global average pooling
mu = self.fc_mu(x_masked_mean)
logvar = self.fc_var(x_masked_mean)
z = self.reparameterize(mu, logvar)
return z, mask, ids_restore, mu, logvar
def forward_decoder(self, z, ids_restore):
"""Forward pass through decoder.
Args:
z (torch.Tensor): Latent vector.
ids_restore (torch.Tensor): Indices for restoring masked patches.
Returns:
torch.Tensor: Reconstructed patches.
"""
# Embed latent vector
x = self.decoder_embed(z)
x = x.unsqueeze(1) # Add sequence dimension
# Append mask tokens
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] - 1, 1)
x = torch.cat([x, mask_tokens], dim=1) # [B, N+1, D]
# Restore position information
x = x + self.decoder_pos_embed
# Apply Transformer decoder
for layer in self.decoder_layers:
x = layer(x)
# Predictor projection
x = self.decoder_pred(x)
return x
def forward(self, x, mask_ratio=None):
"""Forward pass.
Args:
x (torch.Tensor): Input tensor.
mask_ratio (float, optional): Ratio of patches to mask.
Returns:
tuple: Predictions, mask, mean, and log variance.
"""
if mask_ratio is None:
mask_ratio = self.mask_ratio
# Encode
z, mask, ids_restore, mu, logvar = self.forward_encoder(x, mask_ratio)
# Decode
pred = self.forward_decoder(z, ids_restore)
return pred, mask, mu, logvar
def compute_loss(self, x, pred, mask, mu, logvar, kld_weight=0.01):
"""Compute VAE loss.
Args:
x (torch.Tensor): Input tensor.
pred (torch.Tensor): Predicted tensor.
mask (torch.Tensor): Mask tensor.
mu (torch.Tensor): Mean tensor.
logvar (torch.Tensor): Log variance tensor.
kld_weight (float): Weight for KL divergence term.
Returns:
tuple: Total loss, reconstruction loss, and KL divergence loss.
"""
# Convert image to patches
patches = rearrange(x, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)',
p1=self.patch_size, p2=self.patch_size)
# Handle masking without CLS token
mask = mask[:, 1:] # Remove mask for CLS token
pred = pred[:, 1:] # Remove CLS token predictions
# Compute reconstruction loss (MSE)
loss_recon = F.mse_loss(pred, patches, reduction='none')
loss_recon = (loss_recon * mask.unsqueeze(-1)).sum() / (mask.sum() + 1e-6)
# KL divergence loss
loss_kld = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
loss_kld = loss_kld.mean()
# Total loss
loss = loss_recon + kld_weight * loss_kld
return loss, loss_recon, loss_kld
class MAEVAETrainer:
"""MAE-VAE Trainer.
Args:
model (nn.Module): MAE-VAE model.
optimizer (torch.optim.Optimizer): Optimizer.
device (str): Device to use.
kld_weight (float): Weight for KL divergence term.
"""
def __init__(
self,
model,
optimizer,
device='cuda' if torch.cuda.is_available() else 'cpu',
kld_weight=0.05
):
self.model = model.to(device)
self.optimizer = optimizer
self.device = device
self.kld_weight = kld_weight
self.scaler = torch.cuda.amp.GradScaler() # For mixed precision training
def train_step(self, batch):
"""Train step.
Args:
batch (torch.Tensor): Input batch.
Returns:
dict: Losses.
"""
self.model.train()
x = batch.to(self.device)
# Use mixed precision training
with torch.cuda.amp.autocast():
# Forward pass
pred, mask, mu, logvar = self.model(x)
# Compute loss
loss, recon_loss, kld_loss = self.model.compute_loss(
x, pred, mask, mu, logvar, self.kld_weight
)
# Backward pass with gradient scaling
self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
# Update weights with gradient scaling
self.scaler.step(self.optimizer)
self.scaler.update()
return {
'loss': loss.item(),
'recon_loss': recon_loss.item(),
'kld_loss': kld_loss.item()
}
def validate_step(self, batch):
"""Validate step.
Args:
batch (torch.Tensor): Input batch.
Returns:
dict: Losses.
"""
self.model.eval()
with torch.no_grad():
x = batch.to(self.device)
# Forward pass
pred, mask, mu, logvar = self.model(x)
# Compute loss
loss, recon_loss, kld_loss = self.model.compute_loss(
x, pred, mask, mu, logvar, self.kld_weight
)
return {
'loss': loss.item(),
'recon_loss': recon_loss.item(),
'kld_loss': kld_loss.item()
}