Skip to content

Commit

Permalink
Merge branch 'main' into rank
Browse files Browse the repository at this point in the history
  • Loading branch information
GeorgeTsoukalas authored Oct 29, 2024
2 parents f99343d + 975d224 commit ea4c80c
Show file tree
Hide file tree
Showing 8 changed files with 24 additions and 19 deletions.
2 changes: 1 addition & 1 deletion coq/src/putnam_1996_a4.v
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Theorem putnam_1996_a4
(SS : Ensemble (A * A * A))
(hSdistinct: forall a b c : A, In _ SS (a, b, c) -> a <> b /\ b <> c /\ c <> a)
(hS1 : forall a b c : A, In _ SS (a, b, c) <-> In _ SS (b, c, a))
(hS2 : forall a b c : A, In _ SS (a, b, c) <-> ~ (In _ SS (c, b, a)))
(hS2 : forall a b c : A, a <> c -> (In _ SS (a, b, c) <-> ~ (In _ SS (c, b, a))))
(hS3 : forall a b c d : A, (In _ SS (a, b, c) /\ In _ SS (c, d, a)) <-> (In _ SS (b, c, d) /\ In _ SS (d, a, b)))
: exists g : A -> R, Injective g /\ (forall a b c : A, g a < g b /\ g b < g c -> In _ SS (a, b, c)).
Proof. Admitted.
2 changes: 1 addition & 1 deletion informal/putnam.json
Original file line number Diff line number Diff line change
Expand Up @@ -5044,7 +5044,7 @@
{
"problem_name": "putnam_2022_a1",
"informal_statement": "Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \\ln(1+x^2)$ in exactly one point.",
"informal_solution": "Show that the solution is the set of ordered pairs $(a,b)$ which satisfy at least one of (1) $a = b = 0$, (2) $|a| \\geq 1$, and (3) $0 < |a| < 1$ and $b < \\log(1 - r_{-})^2 - |a|r_{-}$ or $b > \\log(1 + r_{+})^2 + |a|r_{+}$ where $r_{\\pm} = \\frac{1 \\pm \\sqrt{1 - a^2}}{a}$.",
"informal_solution": "Show that the solution is the set of ordered pairs $(a,b)$ which satisfy at least one of (1) $a = b = 0$, (2) $|a| \\geq 1$, and (3) $0 < |a| < 1$ and $b < \\log(1 + r_{-}^2) - ar_{-}$ or $b > \\log(1 + r_{+}^2) - ar_{+}$ where $r_{\\pm} = \\frac{1 \\pm \\sqrt{1 - a^2}}{a}$.",
"tags": [
"algebra"
]
Expand Down
2 changes: 1 addition & 1 deletion isabelle/putnam_1996_a4.thy
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ theorem putnam_1996_a4:
assumes hA : "CARD('A) = n"
and hSdistinct: "\<forall>a b c::'A. ((a, b, c) \<in> S \<longrightarrow> (a \<noteq> b \<and> b \<noteq> c \<and> a \<noteq> c))"
and hS1 : " \<forall> a b c :: 'A. (a, b, c) \<in> S \<longleftrightarrow> (b, c, a) \<in> S"
and hS2 : " \<forall> a b c :: 'A. (a, b, c) \<in> S \<longleftrightarrow> (c, b, a) \<notin> S"
and hS2 : " \<forall> a b c :: 'A. a \<noteq> c \<longrightarrow> ((a, b, c) \<in> S \<longleftrightarrow> (c, b, a) \<notin> S)"
and hS3 : " \<forall> a b c d :: 'A. ((a, b, c) \<in> S \<and> (c, d, a) \<in> S) \<longleftrightarrow> ((b, c, d) \<in> S \<and> (d, a, b) \<in> S)"
shows "\<exists> g :: 'A \<Rightarrow> real. inj g \<and> (\<forall> a b c :: 'A. (g a < g b \<and> g b < g c) \<longrightarrow> (a, b, c) \<in> S)"
sorry
Expand Down
5 changes: 3 additions & 2 deletions lean4/src/putnam_1963_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@ theorem putnam_1963_a3
(n : ℕ)
(hn : 0 < n)
(f y : ℝ → ℝ)
(hf : ContinuousOn f (Ici 1)) :
ContDiffOn ℝ n y (Ici 1) ∧ (∀ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔
(hf : ContinuousOn f (Ici 1))
(hy : ContDiffOn ℝ n y (Ici 1)) :
(∀ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔
∀ x ≥ 1, y x = ∫ t in (1 : ℝ)..x, putnam_1963_a3_solution f n x t :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_1996_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ theorem putnam_1996_a4
(S : Set (A × A × A))
(hSdistinct : ∀ a b c : A, ⟨a, b, c⟩ ∈ S → a ≠ b ∧ b ≠ c ∧ a ≠ c)
(hS1 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨b, c, a⟩ ∈ S)
(hS2 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ ∉ S)
(hS2 : ∀ a b c : A, a ≠ c → (⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ ∉ S))
(hS3 : ∀ a b c d : A, (⟨a, b, c⟩ ∈ S ∧ ⟨c, d, a⟩ ∈ S) ↔ (⟨b,c,d⟩ ∈ S ∧ ⟨d,a,b⟩ ∈ S))
: ∃ g : A → ℝ, Injective g ∧ (∀ a b c : A, g a < g b ∧ g b < g c → ⟨a,b,c⟩ ∈ S) :=
sorry
15 changes: 8 additions & 7 deletions lean4/src/putnam_2009_b4.lean
Original file line number Diff line number Diff line change
@@ -1,16 +1,17 @@
import Mathlib

open Topology MvPolynomial Filter Set Metric
open intervalIntegral MvPolynomial Real

abbrev putnam_2009_b4_solution : ℕ := sorry
-- 2020050
/--
Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if the average value of the polynomial on each circle centered at the origin is $0$. The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$. Find the dimension of $V$.
-/
theorem putnam_2009_b4
(balanced : MvPolynomial (Fin 2) ℝ → Prop)
(hbalanced : balanced = fun P ↦ ∀ r > 0, (∫ x in Metric.sphere (0 : EuclideanSpace ℝ (Fin 2)) r, MvPolynomial.eval x P) / (2 * Real.pi * r) = 0)
(V : Set (MvPolynomial (Fin 2) ℝ)) [AddCommGroup V] [Module ℝ V]
(hV : ∀ P : MvPolynomial (Fin 2) ℝ, P ∈ V ↔ balanced P ∧ P.totalDegree ≤ 2009)
: (Module.rank ℝ V = putnam_2009_b4_solution) :=
sorry
(IsBalanced : MvPolynomial (Fin 2) ℝ → Prop)
(IsBalanced_def : ∀ P, IsBalanced P ↔ ∀ r > 0,
(∫ t in (0 : ℝ)..(2 * π), eval ![r * cos t, r * sin t] P) / (2 * π * r) = 0)
(V : Submodule ℝ (MvPolynomial (Fin 2) ℝ))
(V_def : ∀ P, P ∈ V ↔ IsBalanced P ∧ P.totalDegree ≤ 2009) :
Module.rank ℝ V = putnam_2009_b4_solution :=
sorry
13 changes: 8 additions & 5 deletions lean4/src/putnam_2017_a2.lean
Original file line number Diff line number Diff line change
@@ -1,11 +1,14 @@
import Mathlib

open Polynomial

/--
Let $Q_0(x)=1$, $Q_1(x)=x$, and $Q_n(x)=\frac{(Q_{n-1}(x))^2-1}{Q_{n-2}(x)}$ for all $n \geq 2$. Show that, whenever $n$ is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients.
-/
theorem putnam_2017_a2
(Q : ℕ → ℝ → ℝ)
(hQbase : ∀ x : ℝ, Q 0 x = 1 ∧ Q 1 x = x)
(hQn : ∀ n ≥ 2, ∀ x : ℝ, Q n x = ((Q (n - 1) x) ^ 2 - 1) / Q (n - 2) x)
: ∀ n > 0, ∃ P : Polynomial ℝ, (∀ i : ℕ, P.coeff i = round (P.coeff i)) ∧ Q n = P.eval :=
sorry
(Q : ℕ → RatFunc ℚ)
(hQbase : Q 0 = 1 ∧ Q 1 = (X : ℚ[X]))
(hQn : ∀ n, Q (n + 2) = (Q (n + 1) ^ 2 - 1) / Q n)
(n : ℕ) (hn : 0 < n) :
∃ P : ℤ[X], Q n = P.map (Int.castRingHom ℚ) :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2022_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ import Mathlib
open Polynomial

abbrev putnam_2022_a1_solution : Set (ℝ × ℝ) := sorry
-- {(a, b) | (a = 0 ∧ b = 0) ∨ (|a| ≥ 1) ∨ (0 < |a| ∧ |a| < 1 ∧ (b < (Real.log (1 - (1 - Real.sqrt (1 - a^2))/a))^2 - |a| * (1 - Real.sqrt (1 - a^2))/a ∨ b > (Real.log (1 - (1 + Real.sqrt (1 - a^2))/a))^2 - |a| * (1 + Real.sqrt (1 - a^2))/a))}
-- {(a, b) | (a = 0 ∧ b = 0) ∨ 1 ≤ |a| ∨ (0 < |a| ∧ |a| < 1 ∧ letI rm := (1 - (1 - a ^ 2)) / a; letI rp := (1 + √(1 - a ^ 2)) / a; (b < Real.log (1 + rm ^ 2) - a * rm ∨ b > Real.log (1 + rp ^ 2) - a * rp))}
/--
Determine all ordered pairs of real numbers $(a,b)$ such that the line $y = ax+b$ intersects the curve $y = \ln(1+x^2)$ in exactly one point.
-/
Expand Down

0 comments on commit ea4c80c

Please sign in to comment.