Skip to content

Commit

Permalink
Add missing arguments to rank
Browse files Browse the repository at this point in the history
  • Loading branch information
eric-wieser committed Oct 28, 2024
1 parent 64211ad commit f99343d
Show file tree
Hide file tree
Showing 4 changed files with 5 additions and 5 deletions.
2 changes: 1 addition & 1 deletion lean4/src/putnam_1991_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@ theorem putnam_1991_a4 :
(¬ ∃ p, MapClusterPt p atTop c) ∧
(Summable <| fun i ↦ r i ^ 2) ∧
(∀ L : AffineSubspace ℝ (EuclideanSpace ℝ (Fin 2)),
finrank L.direction = 1 → ∃ i, (↑L ∩ closedBall (c i) (r i)).Nonempty)) ↔
finrank L.direction = 1 → ∃ i, (↑L ∩ closedBall (c i) (r i)).Nonempty)) ↔
putnam_1991_a4_solution :=
sorry
4 changes: 2 additions & 2 deletions lean4/src/putnam_2006_b4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ theorem putnam_2006_b4
(hk : k ≤ n)
(Z : Set (Fin n → ℝ))
(hZ : Z = {P : Fin n → ℝ | ∀ j : Fin n, P j = 0 ∨ P j = 1})
(hmaxeq : ∃ V : Subspace ℝ (Fin n → ℝ), Module.rank V = k ∧ (Z ∩ V).ncard = max)
(hmaxub : ∀ V : Subspace ℝ (Fin n → ℝ), Module.rank V = k → (Z ∩ V).ncard ≤ max)
(hmaxeq : ∃ V : Subspace ℝ (Fin n → ℝ), Module.rank V = k ∧ (Z ∩ V).ncard = max)
(hmaxub : ∀ V : Subspace ℝ (Fin n → ℝ), Module.rank V = k → (Z ∩ V).ncard ≤ max)
: (max = putnam_2006_b4_solution k) :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2008_b3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ theorem putnam_2008_b3
(contains : ℝ → Prop)
(contains_def : ∀ r, contains r ↔
∃ᵉ (A : AffineSubspace ℝ (EuclideanSpace ℝ (Fin 4))) (C ∈ A),
finrank A.direction = 2
finrank A.direction = 2
sphere C r ∩ A ⊆ H) :
IsGreatest contains putnam_2008_b3_solution :=
sorry
2 changes: 1 addition & 1 deletion lean4/src/putnam_2009_b4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,5 +12,5 @@ theorem putnam_2009_b4
(hbalanced : balanced = fun P ↦ ∀ r > 0, (∫ x in Metric.sphere (0 : EuclideanSpace ℝ (Fin 2)) r, MvPolynomial.eval x P) / (2 * Real.pi * r) = 0)
(V : Set (MvPolynomial (Fin 2) ℝ)) [AddCommGroup V] [Module ℝ V]
(hV : ∀ P : MvPolynomial (Fin 2) ℝ, P ∈ V ↔ balanced P ∧ P.totalDegree ≤ 2009)
: (Module.rank V = putnam_2009_b4_solution) :=
: (Module.rank V = putnam_2009_b4_solution) :=
sorry

0 comments on commit f99343d

Please sign in to comment.