Skip to content

Commit

Permalink
Rmd Files added
Browse files Browse the repository at this point in the history
  • Loading branch information
FulyaGokalp2 authored Feb 20, 2024
1 parent 381dd34 commit 100a75b
Show file tree
Hide file tree
Showing 2 changed files with 341 additions and 0 deletions.
113 changes: 113 additions & 0 deletions Reproducible_pipelines_book_club/Meeting_05/analysis.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
---
title: "Nominal house prices data in Luxembourg"
author: "Bruno Rodrigues"
date: "`r Sys.Date()`"
---

```{r, messages = FALSE}
library(dplyr)
library(ggplot2)
library(purrr)
library(tidyr)
```

Let’s load the datasets:

```{r}
commune_level_data <- read.csv(
"../datasets/house_prices_commune_level_data.csv"
)
country_level_data <- read.csv(
"../datasets/house_prices_country_level_data.csv"
)
```

Let’s compute the Laspeyeres index for each commune:

```{r}
get_laspeyeres <- function(dataset){
which_dataset <- deparse(substitute(dataset))
group_var <- if(grepl("commune", which_dataset)){
quo(locality)
} else {
NULL
}
dataset %>%
group_by(!!group_var) %>%
mutate(p0 = ifelse(year == "2010", average_price_nominal_euros, NA)) %>%
fill(p0, .direction = "down") %>%
mutate(p0_m2 = ifelse(year == "2010", average_price_m2_nominal_euros, NA)) %>%
fill(p0_m2, .direction = "down") %>%
ungroup() %>%
mutate(pl = average_price_nominal_euros/p0*100,
pl_m2 = average_price_m2_nominal_euros/p0_m2*100)
}
commune_level_data <- get_laspeyeres(commune_level_data)
```

Let’s also compute it for the whole country:

```{r}
country_level_data <- get_laspeyeres(country_level_data)
```

We are going to create a plot for 5 communes and compare the price evolution in the communes
to the national price evolution. Let’s first list the communes:

```{r}
communes <- c("Luxembourg",
"Esch-sur-Alzette",
"Mamer",
"Schengen",
"Wincrange")
```

```{r}
make_plot <- function(commune){
commune_data <- commune_level_data %>%
filter(locality == commune)
data_to_plot <- bind_rows(
country_level_data,
commune_data
)
ggplot(data_to_plot) +
geom_line(aes(y = pl_m2,
x = year,
group = locality,
colour = locality))
}
```

```{r, results = "asis"}
res <- lapply(communes, function(x){
knitr::knit_child(text = c(
'\n',
'## Plot for commune: `r x`',
'\n',
'```{r, echo = FALSE}',
'print(make_plot(x))',
'```'
),
envir = environment(),
quiet = TRUE)
})
cat(unlist(res), sep = "\n")
```

228 changes: 228 additions & 0 deletions Reproducible_pipelines_book_club/Meeting_05/save_data.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
---
title: "Nominal house prices data in Luxembourg - Data cleaning"
author: "Bruno Rodrigues"
date: "`r Sys.Date()`"
---

```{r, warning=FALSE, message=FALSE}
library(dplyr)
library(ggplot2)
library(janitor)
library(purrr)
library(readxl)
library(rvest)
library(stringr)
```

## Downloading the data

This data is downloaded from the luxembourguish [Open Data
Portal](https://data.public.lu/fr/datasets/prix-annonces-des-logements-par-commune/)
(the data set called *Série rétrospective des prix annoncés des maisons par commune, de 2010 à 2021*), and the original data is from the "Observatoire de l'habitat". This data
contains prices for houses sold since 2010 for each luxembourguish commune.

The function below uses the permanent URL from the Open Data Portal to access the data,
but I have also rehosted the data, and use my link to download the data (for archival
purposes):

```{r}
get_raw_data <- function(url = "https://data.public.lu/fr/datasets/r/14b0156e-ff87-4a36-a867-933fc9a6f903"){
raw_data <- tempfile(fileext = ".xlsx")
download.file(url,
raw_data,
mode = "wb") # for compatibility with Windows
sheets <- excel_sheets(raw_data)
read_clean <- function(..., sheet){
read_excel(..., sheet = sheet) %>%
mutate(year = sheet)
}
raw_data <- map_dfr(sheets,
~read_clean(raw_data,
skip = 10,
sheet = .)) %>%
clean_names()
raw_data %>%
rename(locality = commune,
n_offers = nombre_doffres,
average_price_nominal_euros = prix_moyen_annonce_en_courant,
average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_en_courant,
average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_en_courant
) %>%
mutate(locality = str_trim(locality)) %>%
select(year, locality, n_offers, starts_with("average"))
}
```

```{r}
raw_data <- get_raw_data(url = "https://github.com/b-rodrigues/rap4all/raw/master/datasets/vente-maison-2010-2021.xlsx")
```

We need clean the data: "Luxembourg" is "Luxembourg-ville" in 2010 and 2011,
then "Luxembourg". "Pétange" is also spelled non-consistently, and we also need
to convert columns to right type. We also directly remove rows where the
locality contains information on the "Source":

```{r}
clean_raw_data <- function(raw_data){
raw_data %>%
mutate(locality = ifelse(grepl("Luxembourg-Ville", locality),
"Luxembourg",
locality),
locality = ifelse(grepl("P.tange", locality),
"Pétange",
locality)
) %>%
filter(!grepl("Source", locality)) %>%
mutate(across(starts_with("average"), as.numeric))
}
```

```{r}
flat_data <- clean_raw_data(raw_data)
```

We now need to make sure that we got all the communes/localities in there. There
were mergers in 2011, 2015 and 2018. So we need to account for these localities.

We’re now scraping data from wikipedia of former Luxembourguish communes:

```{r}
get_former_communes <- function(
url = "https://is.gd/lux_former_communes",
min_year = 2009,
table_position = 3
){
read_html(url) %>%
html_table() %>%
pluck(table_position) %>%
clean_names() %>%
filter(year_dissolved > min_year)
}
```

```{r}
former_communes <- get_former_communes()
```

We can scrape current communes:

```{r}
get_current_communes <- function(
url = "https://is.gd/lux_communes",
table_position = 2
){
read_html(url) |>
html_table() |>
pluck(table_position) |>
clean_names() |>
filter(name_2 != "Name") |>
rename(commune = name_2) |>
mutate(commune = str_remove(commune, " .$"))
}
```

```{r}
current_communes <- get_current_communes()
```

Let’s now create a list of all communes:

```{r}
get_test_communes <- function(former_communes, current_communes){
communes <- unique(c(former_communes$name, current_communes$commune))
# we need to rename some communes
# Different spelling of these communes between wikipedia and the data
communes[which(communes == "Clemency")] <- "Clémency"
communes[which(communes == "Redange")] <- "Redange-sur-Attert"
communes[which(communes == "Erpeldange-sur-Sûre")] <- "Erpeldange"
communes[which(communes == "Luxembourg City")] <- "Luxembourg"
communes[which(communes == "Käerjeng")] <- "Kaerjeng"
communes[which(communes == "Petange")] <- "Pétange"
communes
}
```

```{r}
former_communes <- get_former_communes()
current_communes <- get_current_communes()
communes <- get_test_communes(former_communes, current_communes)
```

Let’s test to see if all the communes from our dataset are represented.

```{r}
setdiff(flat_data$locality, communes)
```

If the above code doesn’t show any communes, then this means that we are
accounting for every commune.

Let’s keep the national average in another dataset:

```{r}
make_country_level_data <- function(flat_data){
country_level <- flat_data %>%
filter(grepl("nationale", locality)) %>%
select(-n_offers)
offers_country <- flat_data %>%
filter(grepl("Total d.offres", locality)) %>%
select(year, n_offers)
full_join(country_level, offers_country) %>%
select(year, locality, n_offers, everything()) %>%
mutate(locality = "Grand-Duchy of Luxembourg")
}
```

```{r}
country_level_data <- make_country_level_data(flat_data)
```

We can finish cleaning the commune data:

```{r}
make_commune_level_data <- function(flat_data){
flat_data %>%
filter(!grepl("nationale|offres", locality),
!is.na(locality))
}
```

```{r}
commune_level_data <- make_commune_level_data(flat_data)
```

We now save the dataset in a folder for further analysis (keep chunk option to
`eval = FALSE` to avoid running it when knitting):

```{r, eval = FALSE}
write.csv(commune_level_data,
"datasets/house_prices_commune_level_data.csv",
row.names = FALSE)
write.csv(country_level_data,
"datasets/house_prices_country_level_data.csv",
row.names = FALSE)
```

0 comments on commit 100a75b

Please sign in to comment.