Skip to content

Commit

Permalink
Qmd Files Added
Browse files Browse the repository at this point in the history
Qmd Files and _quarto.yml added
  • Loading branch information
FulyaGokalp2 authored Feb 20, 2024
1 parent 09a9e77 commit 381dd34
Show file tree
Hide file tree
Showing 3 changed files with 375 additions and 0 deletions.
14 changes: 14 additions & 0 deletions Reproducible_pipelines_book_club/Meeting_05/_quarto.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
project:
type: website

website:
title: "Prices"
navbar:
left:
- href: index.qmd
text: Home
- href: analysis.qmd
text: Analysis

execute:
freeze: auto
127 changes: 127 additions & 0 deletions Reproducible_pipelines_book_club/Meeting_05/analysis.qmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
---
title: "Nominal house prices data in Luxembourg"
author: "Fulya Gokalp Yavuz"
date: "2024-02-20"
format: html
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(dplyr)
library(ggplot2)
library(tidyr)
```

# Load the Data Sets

```{r}
commune_level_data <- read.csv("datasets/house_prices_commune_level_data.csv")
country_level_data <- read.csv("datasets/house_prices_country_level_data.csv")
```

# Laspeyeres index

Let's compute the Laspeyeres index for country and commune level

```{r}
#| code-line-numbers: "|2|3-9|25"
get_laspeyeres <- function(dataset){
which_dataset <- deparse(substitute(dataset))
group_var <- if(grepl("commune", which_dataset)){
quo(locality)
} else {
NULL
}
dataset %>%
group_by(!!group_var) %>%
mutate(p0 = ifelse(year == "2010", average_price_nominal_euros, NA)) %>%
fill(p0, .direction = "down") %>%
mutate(p0_m2 = ifelse(year == "2010", average_price_m2_nominal_euros, NA)) %>%
fill(p0_m2, .direction = "down") %>%
ungroup() %>%
mutate(pl = average_price_nominal_euros/p0*100,
pl_m2 = average_price_m2_nominal_euros/p0_m2*100)
}
commune_level_data <- get_laspeyeres(commune_level_data)
commune_level_data
```

Let’s also compute it for the whole country:

```{r}
country_level_data <- get_laspeyeres(country_level_data)
```

# Visualization

We are going to create a plot for 5 communes and compare the price evolution in the communes to the national price evolution. Let’s first list the communes:

```{r}
communes <- c("Luxembourg",
"Esch-sur-Alzette",
"Mamer",
"Schengen",
"Wincrange")
```

```{r}
make_plot <- function(commune){
commune_data <- commune_level_data %>%
filter(locality == commune)
data_to_plot <- bind_rows(
country_level_data,
commune_data
)
ggplot(data_to_plot) +
geom_line(aes(y = pl_m2,
x = year,
group = locality,
colour = locality))
}
```

```{r, results = "asis"}
res <- lapply(communes, function(x){
knitr::knit_child(text = c(
'\n',
'## Plot for commune: `r x`',
'\n',
'```{r, echo = FALSE}',
'print(make_plot(x))',
'```'
),
envir = environment(),
quiet = TRUE)
})
cat(unlist(res), sep = "\n")
```

# Analysis

## LASSO

## SCAD

# Methods

One

Two

Three
234 changes: 234 additions & 0 deletions Reproducible_pipelines_book_club/Meeting_05/index.qmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,234 @@
---
title: "Nominal house prices data in Luxembourg - Data cleaning"
author: "Fulya Gokalp Yavuz"
date: "2024-02-20"
format: html
execute:
echo: true
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

# Load Libraries

```{r libraries, warning=FALSE, message=FALSE}
library(dplyr)
library(ggplot2)
library(janitor)
library(purrr)
library(readxl)
library(rvest)
library(stringr)
## Downloading the data
```

# Getting the Data

This data is downloaded from the Luxembourguish [Open Data Portal](https://data.public.lu/fr/datasets/prix-annonces-des-logements-par-commune/) (the data set called *Série rétrospective des prix annoncés des maisons par commune, de 2010 à 2021*), and the original data is from the "Observatoire de l'habitat". This data contains prices for houses sold since 2010 for each luxembourguish commune.

The function below uses the permanent URL from the Open Data Portal to access the data, but I have also rehosted the data, and use my link to download the data (for archival purposes):

```{r}
#| output-location: slide
get_raw_data <- function(url = "https://data.public.lu/fr/datasets/r/14b0156e-ff87-4a36-a867-933fc9a6f903"){
raw_data <- tempfile(fileext = ".xlsx")
download.file(url,
raw_data,
mode = "wb") # for compatibility with Windows
sheets <- excel_sheets(raw_data)
read_clean <- function(..., sheet){
read_excel(..., sheet = sheet) %>%
mutate(year = sheet)
}
raw_data <- map_dfr(sheets,
~read_clean(raw_data,
skip = 10,
sheet = .)) %>%
clean_names()
raw_data %>%
rename(locality = commune,
n_offers = nombre_doffres,
average_price_nominal_euros = prix_moyen_annonce_en_courant,
average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_en_courant,
average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_en_courant
) %>%
mutate(locality = str_trim(locality)) %>%
select(year, locality, n_offers, starts_with("average"))
}
```

```{r, cache=TRUE}
raw_data <- get_raw_data(url = "https://github.com/b-rodrigues/rap4all/raw/master/datasets/vente-maison-2010-2021.xlsx")
```

# Clean the Data

We need clean the data: "Luxembourg" is "Luxembourg-ville" in 2010 and 2011, then "Luxembourg". "Pétange" is also spelled non-consistently, and we also need to convert columns to right type. We also directly remove rows where the locality contains information on the "Source":

```{r}
clean_raw_data <- function(raw_data){
raw_data %>%
mutate(locality = ifelse(grepl("Luxembourg-Ville", locality),
"Luxembourg",
locality),
locality = ifelse(grepl("P.tange", locality),
"Pétange",
locality)
) %>%
filter(!grepl("Source", locality)) %>%
mutate(across(starts_with("average"), as.numeric))
}
```

```{r}
flat_data <- clean_raw_data(raw_data)
```

We now need to make sure that we got all the communes/localities in there. There were mergers in 2011, 2015 and 2018. So we need to account for these localities.

We’re now scraping data from wikipedia of former Luxembourguish communes:

```{r}
get_former_communes <- function(
url = "https://is.gd/lux_former_communes",
min_year = 2009,
table_position = 3
){
read_html(url) %>%
html_table() %>%
pluck(table_position) %>%
clean_names() %>%
filter(year_dissolved > min_year)
}
```

```{r}
former_communes <- get_former_communes()
```

We can scrape current communes:

```{r}
get_current_communes <- function(
url = "https://is.gd/lux_communes",
table_position = 2
){
read_html(url) |>
html_table() |>
pluck(table_position) |>
clean_names() |>
filter(name_2 != "Name") |>
rename(commune = name_2) |>
mutate(commune = str_remove(commune, " .$"))
}
```

```{r}
current_communes <- get_current_communes()
```

Let’s now create a list of all communes:

```{r}
get_test_communes <- function(former_communes, current_communes){
communes <- unique(c(former_communes$name, current_communes$commune))
# we need to rename some communes
# Different spelling of these communes between wikipedia and the data
communes[which(communes == "Clemency")] <- "Clémency"
communes[which(communes == "Redange")] <- "Redange-sur-Attert"
communes[which(communes == "Erpeldange-sur-Sûre")] <- "Erpeldange"
communes[which(communes == "Luxembourg City")] <- "Luxembourg"
communes[which(communes == "Käerjeng")] <- "Kaerjeng"
communes[which(communes == "Petange")] <- "Pétange"
communes
}
```

```{r}
former_communes <- get_former_communes()
current_communes <- get_current_communes()
communes <- get_test_communes(former_communes, current_communes)
```

Let’s test to see if all the communes from our dataset are represented.

```{r}
setdiff(flat_data$locality, communes)
```

If the above code doesn’t show any communes, then this means that we are accounting for every commune.

Let’s keep the national average in another dataset:

```{r}
make_country_level_data <- function(flat_data){
country_level <- flat_data %>%
filter(grepl("nationale", locality)) %>%
select(-n_offers)
offers_country <- flat_data %>%
filter(grepl("Total d.offres", locality)) %>%
select(year, n_offers)
full_join(country_level, offers_country) %>%
select(year, locality, n_offers, everything()) %>%
mutate(locality = "Grand-Duchy of Luxembourg")
}
```

```{r}
country_level_data <- make_country_level_data(flat_data)
country_level_data
```

We can finish cleaning the commune data:

```{r}
make_commune_level_data <- function(flat_data){
flat_data %>%
filter(!grepl("nationale|offres", locality),
!is.na(locality))
}
```

```{r}
commune_level_data <- make_commune_level_data(flat_data)
commune_level_data
```

We now save the dataset in a folder for further analysis (keep chunk option to `eval = FALSE` to avoid running it when knitting):

```{r, eval = TRUE}
write.csv(commune_level_data,
"datasets/house_prices_commune_level_data.csv",
row.names = FALSE)
write.csv(country_level_data,
"datasets/house_prices_country_level_data.csv",
row.names = FALSE)
```

0 comments on commit 381dd34

Please sign in to comment.