Skip to content

Deep-learning framework designed to fulfill medical imaging analysis : segmentation / classification / generation / harmonization

Notifications You must be signed in to change notification settings

nifm-gin/dl_generic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DL-Generic : Internal project at Grenoble Institut of Neuroscience

  • Barbier Team
  • Developed by Stenzel Cackowski

Installation:

  • pip3 install virtualenv
  • virtualenv env
  • source env/bin/activate
  • sudo pip3 install -r requirements.txt

Usage

  • First dispatch your data in a container folder "$data" in 3 folder "$train" "$val" "$test", using the BIDS nomenclature $data/$train/$subject_id/${subject_id}_${sequences_name}.nii.gz
  • Then generate patches to feed our neural network using the patches_generation.py script. --help will list required or optional additional parameters
  • Then you can generate and train you model using the "use_model.py" script. --help will list required or optional additional parameters
  • In case of generation / segmentation usage you might need to reconstruct infered output using the reconstruction.py script

About

Deep-learning framework designed to fulfill medical imaging analysis : segmentation / classification / generation / harmonization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published