-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
executable file
·475 lines (408 loc) · 22.8 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import tensorflow as tf
import numpy as np
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.layers import Concatenate
K = tf.keras.backend
loss_obj = tf.keras.losses.BinaryCrossentropy(from_logits=True)
#### Loss functions ####
def dice_loss(y_true, y_pred):
numerator = 2 * K.sum(y_true * y_pred, axis=-1)
denominator = K.sum(y_true + y_pred, axis=-1)
return 1 - (numerator / denominator)
def binary_ce(y_true, y_pred, sample_weight= None, label_smoothing = 0.1):
#label_smoothing = tf.constant(label_smoothing, dtype = tf.float32)
return K.mean(tf.keras.losses.BinaryCrossentropy(from_logits = True, label_smoothing = label_smoothing)(y_true, y_pred, sample_weight = sample_weight))
def categorical_ce(y_true, y_pred, sample_weight= None, label_smoothing = 0):
return tf.reduce_mean(tf.keras.losses.CategoricalCrossentropy(label_smoothing = label_smoothing, from_logits = True)(y_true, y_pred, sample_weight = sample_weight))
#return tf.keras.losses.categorical_crossentropy(y_true, y_pred, label_smoothing = label_smoothing, from_logits = True)
#def weighted_categorical_ce(y_tre)
def celoss(y_true, y_pred):
return K.mean(binary_ce(y_true, y_pred), axis = -1)
def generator_loss(generated):
return loss_obj(tf.ones_like(generated), generated)
def discriminator_loss(real, generated, fake_real = None):
#here we smooth Ones label to avoid the disc from being to confident about real data
real_loss = loss_obj(tf.ones_like(real) - tf.random.uniform(real.shape, minval = 0, maxval = 0.1), real)
generated_loss = loss_obj(tf.zeros_like(generated), generated)
if fake_real is not None:
#loss on real image from the other sample; Useful for DualGAN
fake_real_loss = loss_obj(tf.zeros_like(fake_real), generated)
total_disc_loss = real_loss + generated_loss + fake_real_loss
return total_disc_loss / 3
else:
total_disc_loss = real_loss + generated_loss
return total_disc_loss / 2
def calc_l1_loss(real_image, cycled_image):
#use boolean mask for loss computation
mask = tf.math.greater_equal(real_image, tf.constant(-0.995, dtype = tf.float32))
loss1 = tf.reduce_mean(tf.abs(tf.boolean_mask(real_image, mask) - tf.boolean_mask(cycled_image, mask)))
return loss1
def masked_mse_loss(real, pred):
mask = tf.math.greater_equal(real, tf.constant(-0.995, dtype = tf.float32))
loss2 = tf.reduce_mean(tf.keras.losses.MSE(tf.boolean_mask(real, mask), tf.boolean_mask(pred, mask)))
return loss2
def mse_loss(real_image, fake_image):
loss2 = tf.reduce_mean(tf.keras.losses.MSE(real_image, fake_image))
return loss2
def cgan_generator_loss(disc_generated_output, gen_output, target, LAMBDA = 100):
gan_loss = loss_obj(tf.ones_like(disc_generated_output), disc_generated_output)
# mean absolute error
l1_loss = tf.reduce_mean(tf.abs(target - gen_output))
total_gen_loss = gan_loss + (LAMBDA * l1_loss)
return total_gen_loss, gan_loss, l1_loss
def log_normal_pdf(sample, mean, logvar, raxis=1):
log2pi = tf.math.log(2. * np.pi)
return tf.reduce_sum(-.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi), axis=raxis)
def vae_sigmoid_loss_logits(pred, tar, z, mean, logvar):
shape = tar.shape
mask = tf.math.greater_equal(tar, tf.constant(0.001, dtype = tf.float32))
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=tar)
#We put CE loss to 0 for background voxels
cross_ent = tf.where(tf.math.greater_equal(tar, tf.constant(0.001, dtype = tf.float32)), cross_ent, 0)
logpx_z = -tf.reduce_sum(cross_ent, axis=[1, 2, 3])
logpz = tf.reduce_sum(log_normal_pdf(z, 0., 0.), axis=[1, 2])
logqz_x = tf.reduce_sum(log_normal_pdf(z, mean, logvar), axis=[1, 2])
logpx_z, logpz, logqz_x = tf.cast(logpx_z, dtype = tf.float64), tf.cast(logpz, dtype = tf.float64), tf.cast(logqz_x, dtype = tf.float64)
reduced_mean = tf.reduce_mean(logpx_z + logpz - logqz_x)
return tf.cast(-reduced_mean, tf.float32)
def gram_matrix(input_tensor):
result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
return result/(num_locations)
def style_loss(pred, tar, pretrained_model):
pred = Concatenate(axis = -1)([pred, pred, pred])
tar = Concatenate(axis = -1)([tar, tar, tar])
pred_output = pretrained_model(pred)
tar_output = pretrained_model(tar)
gram_pred = [gram_matrix(l) for l in pred_output]
gram_tar = [gram_matrix(l) for l in tar_output]
return tf.reduce_mean([tf.reduce_mean((gram_pred[i] - gram_tar[i])**2) for i in range(len(gram_pred))])
def content_loss(pred, tar, pretrained_model):
pred = Concatenate(axis = -1)([pred, pred, pred])
tar = Concatenate(axis = -1)([tar, tar, tar])
pred_output = pretrained_model(pred)
tar_output = pretrained_model(tar)
return tf.reduce_mean([tf.reduce_mean((pred_output[i] - tar_output[i])**2)
for i in range(len(pred_output))])
def ssim_loss(pred, tar):
return 1 - tf.reduce_mean(tf.image.ssim(tar, pred, 1.0))
def contrastive_loss(z1, z2, y_true):
margin = tf.constant(1.0E1)
y_pred = tf.linalg.norm(z1 - z2, axis=1)
y_pred = tf.convert_to_tensor(y_pred)
y_true = tf.dtypes.cast(y_true, y_pred.dtype)
return tf.reduce_mean(y_true * tf.math.square(y_pred) + (1.0 - y_true) * tf.math.square(tf.math.maximum(margin - y_pred, 0.0)))
LAMBDA = tf.constant(200, dtype = tf.float32)
LAMBDA2 = tf.constant(3, dtype = tf.float32)
############################# Training fct #################
@tf.function
def train_step(ClassModel, input_image, target, epoch, write = False):
"""
Classical training step function
@model : model class containing a model to train, its optimizer, its writer
@write : indicates if we log training info for tensorboard analysis
@epoch : the epoch we are at
"""
with tf.GradientTape(persistent = True) as tape:
output = ClassModel.model(input_image, training=True)
# calculate the loss
mse = mse_loss(target, output)
# Calculate the gradients
gradients = tape.gradient(mse,
ClassModel.model.trainable_variables)
# Apply the gradients to the optimizer
ClassModel.optimizer.apply_gradients(zip(gradients,
ClassModel.model.trainable_variables))
if write :
with ClassModel.writer.as_default():
tf.summary.scalar('loss', mse, step=epoch)
@tf.function
def val_step(ClassModel, input_image, target, epoch, on_cpu):
"""
Classical training step function
@model : model class containing a model to train, its optimizer, its writer
@epoch : the epoch we are at
"""
with tf.device('/device:%s:0' % "CPU" if on_cpu else "GPU"):
output = ClassModel.model(input_image, training=False)
# calculate the loss
mse = mse_loss(target, output)
with ClassModel.writer.as_default():
tf.summary.scalar('val_loss', mse, step=epoch)
return mse
def train(ClassModel, epochs = 10, steps = 25, load_ckpt = False, val_on_cpu = False):
"""
fct to train our model
"""
checkpoint_path = ClassModel.save_path + "/checkpoints/train"
ckpt = tf.train.Checkpoint(model=ClassModel.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)
# if a checkpoint exists, restore the latest checkpoint.
try:
if ckpt_manager.latest_checkpoint and load_ckpt:
ckpt.restore(ckpt_manager.latest_checkpoint)
print ('Latest checkpoint restored!!')
for opt in ClassModel.optimizer:
opt.lr.assign(ClassModel.initial_learning_rate)
except:
print("Could not restore latest checkpoint, continuing as if!")
print("Start training")
for X_val, Y_val in ClassModel.data_generator("val"):
#we load val data only once
for e in range(1, epochs):
start = time.time()
n = 1
for image, target in ClassModel.data_generator():
train_step(ClassModel, image, target, tf.constant(e, dtype = tf.int64), write = True)
if n % steps == 0:
print ('.', end='')
break
n += 1
if e % 5 == 0:
#validation every 5 epochs
val_loss = val_step(ClassModel, X_val, X_val, tf.constant(e, dtype = tf.int64), val_on_cpu)
break
ClassModel.model.save_weights(ClassModel.save_path + '/best.h5')
################### DualGAN functions ###################
@tf.function
def train_step_dualGAN(model, input_image_A, input_image_B, epoch, write = False):
training = True
with tf.GradientTape(persistent = True) as tape:
gen_output_A = model.generator_A(input_image_B, training=training)
recov_B = model.generator_B(gen_output_A, training=training)
gen_output_B = model.generator_B(input_image_A, training=training)
recov_A = model.generator_A(gen_output_B, training=training)
disc_real_A = model.discriminator_A(input_image_A, training=training)
disc_real_B = model.discriminator_B(input_image_B, training=training)
disc_fake_A = model.discriminator_A(gen_output_A, training=training)
disc_fake_B = model.discriminator_B(gen_output_B, training=training)
#We add this metric so that the discriminators will learn to differentiate the 2 data samples (on real images this time)
disc_fake_on_real_B = model.discriminator_B(input_image_A, training=training)
disc_fake_on_real_A = model.discriminator_A(input_image_B, training=training)
# calculate the loss
#Here generator A tries to fool Disc A / same for B
#We add another l1 loss minimizing the gap between both images as we know it is tiny
gen_A_loss = generator_loss(disc_fake_A) + LAMBDA2 * calc_l1_loss(input_image_B, gen_output_A)
gen_B_loss = generator_loss(disc_fake_B) + LAMBDA2 * calc_l1_loss(input_image_A, gen_output_B)
total_cycle_loss = calc_l1_loss(input_image_A, recov_A) + calc_l1_loss(input_image_B, recov_B)
# Total generator loss = adversarial loss + cycle loss
total_gen_A_loss = gen_A_loss + LAMBDA * total_cycle_loss
total_gen_B_loss = gen_B_loss + LAMBDA * total_cycle_loss
disc_A_loss = discriminator_loss(disc_real_A, disc_fake_A)#, disc_fake_on_real_A)
disc_B_loss = discriminator_loss(disc_real_B, disc_fake_B)#, disc_fake_on_real_B)
# Calculate the gradients for generator and discriminator
generator_A_gradients = tape.gradient(total_gen_A_loss,
model.generator_A.trainable_variables)
generator_B_gradients = tape.gradient(total_gen_B_loss,
model.generator_B.trainable_variables)
discriminator_A_gradients = tape.gradient(disc_A_loss,
model.discriminator_A.trainable_variables)
discriminator_B_gradients = tape.gradient(disc_B_loss,
model.discriminator_B.trainable_variables)
# Apply the gradients to the optimizer
model.generator_A_optimizer.apply_gradients(zip(generator_A_gradients,
model.generator_A.trainable_variables))
model.generator_B_optimizer.apply_gradients(zip(generator_B_gradients,
model.generator_B.trainable_variables))
model.discriminator_A_optimizer.apply_gradients(zip(discriminator_A_gradients,
model.discriminator_A.trainable_variables))
model.discriminator_B_optimizer.apply_gradients(zip(discriminator_B_gradients,
model.discriminator_B.trainable_variables))
if write :
with model.writer.as_default():
tf.summary.scalar('total_gen_A_loss', total_gen_A_loss, step=epoch)
tf.summary.scalar('total_gen_B_loss', total_gen_B_loss, step=epoch)
tf.summary.scalar('disc_A_loss', disc_A_loss, step=epoch)
tf.summary.scalar('disc_B_loss', disc_B_loss, step=epoch)
tf.summary.scalar('GEN_A Learning rate', model.generator_A_optimizer.lr, step=epoch)
tf.summary.scalar('Disc_A Learning rate', model.discriminator_A_optimizer.lr, step=epoch)
tf.summary.scalar('GEN_B Learning rate', model.generator_B_optimizer.lr, step=epoch)
tf.summary.scalar('Disc_B Learning rate', model.discriminator_B_optimizer.lr, step=epoch)
tf.summary.scalar('total cycle loss', total_cycle_loss, step=epoch)
for t in discriminator_A_gradients :
tf.summary.histogram("disc_A_%s " % t.name, data=t, step = epoch)
@tf.function
def val_step_dualGAN(model, input_image_A, input_image_B, epoch, on_cpu = False):
#Somethimes We want to run our validation on CPU, cause we usely dont have enough memory on GPU
with tf.device('/device:%s:0' % "CPU" if on_cpu else "GPU"):
training = False
gen_output_A = model.generator_A(input_image_B, training=training)
recov_B = model.generator_B(gen_output_A, training=training)
gen_output_B = model.generator_B(input_image_A, training=training)
recov_A = model.generator_A(gen_output_B, training=training)
disc_real_B = model.discriminator_B(input_image_B, training=training)
disc_real_A = model.discriminator_A(input_image_A, training=training)
disc_fake_A = model.discriminator_A(gen_output_A, training=training)
disc_fake_B = model.discriminator_B(gen_output_B, training=training)
#We add this metric so that the discriminators will learn to differentiate the 2 data samples (on real images this time)
# disc_fake_on_real_B = model.discriminator_B(input_image_A, training=training)
# disc_fake_on_real_A = model.discriminator_A(input_image_B, training=training)
# calculate the loss
#Add l1 loss to avoid too big modification by Generators
gen_A_loss = generator_loss(disc_fake_A) + LAMBDA2 * calc_l1_loss(input_image_B, gen_output_A)
gen_B_loss = generator_loss(disc_fake_B) + LAMBDA2 * calc_l1_loss(input_image_A, gen_output_B)
total_cycle_loss = calc_l1_loss(input_image_A, recov_A) + calc_l1_loss(input_image_B, recov_B)
# Total generator loss = adversarial loss + cycle loss
total_gen_A_loss = gen_A_loss + total_cycle_loss * LAMBDA
total_gen_B_loss = gen_B_loss + total_cycle_loss * LAMBDA
disc_A_loss = discriminator_loss(disc_real_A, disc_fake_A)#, disc_fake_on_real_A)
disc_B_loss = discriminator_loss(disc_real_B, disc_fake_B)#, disc_fake_on_real_B)
with model.writer.as_default():
tf.summary.scalar('total_gen_A_val_loss', total_gen_A_loss, step=epoch)
tf.summary.scalar('total_gen_B_val_loss', total_gen_B_loss, step=epoch)
tf.summary.scalar('disc_A_val_loss', disc_A_loss, step=epoch)
tf.summary.scalar('disc_B_val_loss', disc_B_loss, step=epoch)
tf.summary.scalar('Val total cycle loss', total_cycle_loss, step=epoch)
return [total_gen_A_loss, total_gen_B_loss, disc_A_loss, disc_B_loss]
################################""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=500):
super(CustomSchedule, self).__init__()
self.lr = 0
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
self.lr = tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
return self.lr
class CustomExponentialDecay(tf.keras.optimizers.schedules.ExponentialDecay):
def __init__(self, lr, decay_steps, decay_rate, staircase = True):
super(CustomExponentialDecay, self).__init__(lr, decay_steps, decay_rate, staircase)
self.lr = lr
def __call__(self, step):
self.lr = super(CustomExponentialDecay, self).__call__(step)
return self.lr
class Scheduler():
def __init__(self, list_optimizers, names, ratios = [1], patience = 10, decay_rate = 0.8, early_stopping = np.inf):
#Infos saved as a dictionnary
#opt : [min_val_loss, nb_epoch_without_improvment]
self.training_infos = {}
self.patiences = [patience * ratio for ratio in ratios]
self.decay_rate = decay_rate
self.total_loss = np.inf
self.early_stopping = early_stopping
self.early_stopping_counter = 0
for i, opt in enumerate(list_optimizers) :
self.training_infos[names[i]] = [np.inf, 0, opt]
def update(self, losses):
for i, name in enumerate(self.training_infos):
infos_opt = self.training_infos[name]
if losses[i].numpy() < infos_opt[0]:
if name == "Disc" and (losses[i].numpy() < (infos_opt[0] * 0.66)):
#here we have a drastic Disc amelioration, its when "cops" becomes better than "thieves"
#we want Gen to start from that point now!
print("Drastic Discriminator amelioration! Gen callbacks reseted!")
self.total_loss += (losses[0].numpy() - self.training_infos["Gen"][0])
self.training_infos["Gen"][:2] = [losses[0].numpy(), 0]
print("%s loss reduced from %s to %s" % (name, infos_opt[0], losses[i].numpy()))
#patience reset to 0 and we update best loss
self.training_infos[name][:2] = [losses[i].numpy(), 0]
else:
print("%s loss has not reduced from %s" % (name, infos_opt[0]))
self.training_infos[name][1] += 1
if self.training_infos[name][1] == self.patiences[i] :
self.training_infos[name][1] = 0
if "Disc" in name:
self.training_infos[name][0] = losses[i].numpy()
print("%s lr updated & best losses reseted" % name)
# else:
# #here we reload best checkpoint model for Gen!
# self.model.generator.load_weights(self.model.save_path + '/best_g.h5')
# print("Generator Wweights reloaded from previous best checkpoint")
opt = self.training_infos[name][2]
try:
opt.lr.assign(opt.lr * self.decay_rate)
except:
try:
opt.lr.lr *= self.decay_rate
except:
pass
print("Reducing learning_rate of %s optimizer to %s" % (name, opt.lr))
total = 0
for i, name in enumerate(self.training_infos) :
print(name)
if name not in ["Disc", "Modules"]:
total += losses[i].numpy()
if total <= self.total_loss:
self.total_loss = total
self.early_stopping_counter = 0
return True
self.early_stopping_counter += 1
if self.early_stopping_counter == self.early_stopping :
return "stop"
return False
################################
#My callbacks
##################################
class ModifiedReduceLROnPlateau(ReduceLROnPlateau):
def __init__(self,
save_path,
monitor='val_loss',
factor=0.1,
patience=10,
verbose=0,
mode='auto',
min_delta=1e-4,
cooldown=0,
min_lr=0,
**kwargs):
super(ModifiedReduceLROnPlateau, self).__init__(monitor, factor, patience, verbose, mode, min_delta, cooldown, min_lr)
self.save_path = save_path
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
current = logs.get(self.monitor)
if current is None:
logging.warning('Reduce LR on plateau conditioned on metric `%s` '
'which is not available. Available metrics are: %s',
self.monitor, ','.join(list(logs.keys())))
else:
if self.in_cooldown():
self.cooldown_counter -= 1
self.wait = 0
if self.monitor_op(current, self.best):
self.best = current
self.wait = 0
elif not self.in_cooldown():
self.wait += 1
if self.wait >= self.patience:
old_lr = float(K.get_value(self.model.optimizer.lr))
if old_lr > self.min_lr:
new_lr = old_lr * self.factor
new_lr = max(new_lr, self.min_lr)
K.set_value(self.model.optimizer.lr, new_lr)
if self.verbose > 0:
print('\nEpoch %05d: ReduceLROnPlateau reducing learning '
'rate to %s.' % (epoch + 1, new_lr))
self.cooldown_counter = self.cooldown
self.wait = 0
self.model.load_weights(self.save_path + "/best.h5")
print('Best model reloaded')
############### Load pretrained models #####################
def load_vgg(input_shape):
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet', input_shape=input_shape + (3,))
vgg.trainable=False
contentLayers = ["block5_conv2"]
styleLayers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
return tf.keras.Model(vgg.input, [vgg.get_layer(name).output for name in styleLayers])
############################### TRANSFORMER #####################
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
np.arange(d_model)[np.newaxis, :],
d_model)
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)