-
Notifications
You must be signed in to change notification settings - Fork 79
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs tut inv1d2 basic version done, two matvec versions
- Loading branch information
Showing
5 changed files
with
139 additions
and
43 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
function AHAf = applyAHA(f,x,tol) % use pair of NUFFTs to apply A^* A | ||
Af = finufft1d2(x,+1,tol,f); % apply A | ||
AHAf = finufft1d1(x,Af,-1,tol,length(f)); % apply A^* | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
% demo of inversion of the 1D type 2 NUFFT, ie fitting a Fourier series to | ||
% function values at scattered points. | ||
% Barnett 12/6/23 | ||
clear; close all; addpath utils; addpath ../matlab | ||
|
||
N=3e5; % num unknown coeffs (ie twice the max frequency) | ||
ks = -floor(N/2) + (0:N-1); % row vec of the frequency indices | ||
M=2*N; % number of scattered points on the periodic domain | ||
wellcond=0; | ||
toep = 1; | ||
rng(0); % fix seed for reproducibility | ||
if wellcond, x = 2*pi*((0:M-1)' + 2*rand(M,1))/M; % jittered pts (will be well conditioned) | ||
else, x = 2*pi*rand(M,1); % iid random (will be ill conditioned) | ||
end | ||
|
||
% choose known (complex) coeffs, corresponding to above freqs indices | ||
ftrue = (randn(N,1) + 1i*randn(N,1))/sqrt(N); | ||
|
||
tol = 1e-12; | ||
y = finufft1d2(x,+1,tol,ftrue); % data = eval this Fourier series | ||
|
||
%y = y + 1e-6*(randn(M,1) + 1i*randn(M,1)); % add noise | ||
|
||
if N*M<1e7 % expensive dense direct solve, to check what it's doing | ||
A = exp(1i*x(:)*ks); % outer prod | ||
fdirect = A\y; % ouch! | ||
fprintf('rel l2 coeff err of dense solve: %.3g\n', norm(fdirect-ftrue)/norm(ftrue)) | ||
end | ||
|
||
rhs = finufft1d1(x,y,-1,tol,N); % compute A^* y | ||
|
||
if ~toep % iterative solve of normal eqns, each iteration a pair of NUFFTs | ||
tic | ||
[f,flag,relres,iter] = pcg(@(f) applyAHA(f,x,1e-6), rhs, 1e-6, N); | ||
fprintf('CG-NUFFT relres %.3g done in %d iters, %.3g s\n', relres,iter,toc) | ||
else % iterative solve of normal eqns, each iteration a padded FFT | ||
v = finufft1d1(x, ones(size(x)), -1, tol, 2*N-1); % Toep vec, inds -(N-1):(N+1) | ||
vhat = fft([v;0]); | ||
tic | ||
[f,flag,relres,iter] = pcg(@(f) applyToep(f,vhat), rhs, 1e-6, N); | ||
fprintf('CG-Toep relres %.3g done in %d iters, %.3g s\n', relres,iter,toc) | ||
end | ||
|
||
yrecon = finufft1d2(x,+1,tol,f); | ||
fprintf('\trel l2 resid of Af=y: %.3g\n', norm(yrecon-y)/norm(y)) | ||
fprintf('\trel l2 coeff err: %.3g\n', norm(f-ftrue)/norm(ftrue)) | ||
ng = 10*N; xg = 2*pi*(0:ng)/ng; % fine plot grid | ||
ytrueg = finufft1d2(xg,+1,1e-12,ftrue); % eval true series on plot grid | ||
yg = finufft1d2(xg,+1,1e-12,f); % eval the recon series on plot grid | ||
fprintf('\tabs max err: %.3g\n', norm(yg-ytrueg,inf)) | ||
|
||
figure(); | ||
subplot(2,1,1); plot(xg,real(ytrueg),'r-'); hold on; | ||
plot(xg,real(yg),'b-'); | ||
plot(x,real(y),'k.','markersize',5); legend('true f(x)', 'recon series f(x)', 'data points (x_j,y_j)') | ||
%axis([0 200/N -3*sqrt(N) 3*sqrt(N)]); % show a few wiggles | ||
dx = 2e-3; | ||
if wellcond, x0=0; else, x0 = 0.920; end % view domain start | ||
axis([x0 x0+dx -3 3]); % show a few wiggles | ||
subplot(2,1,2); semilogy(xg,abs(ytrueg-yg),'b-'); hold on; | ||
plot(x,abs(yrecon-y),'k.','markersize',5); legend('error in f(x)', 'error at data points') | ||
axis tight; v=axis; axis([x0 x0+dx 1e-7 1]) | ||
set(gcf,'paperposition',[0 0 8 6]); | ||
if wellcond, print -dpng ../docs/pics/inv1d2err_wellcond.png | ||
else, print -dpng ../docs/pics/inv1d2err.png | ||
end | ||
|
||
% [other methods (CG adj nor eqns, PCG, not as good in my tests)...?] |