Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adiciona questão 05 da prova de 2018 #56

Merged
merged 8 commits into from
Mar 10, 2020
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions src/lib/autores/autores.json
Original file line number Diff line number Diff line change
Expand Up @@ -9,5 +9,11 @@
"nome": "Matheus Alves dos Santos",
"email": "[email protected]",
"github": "alvesmatheus"
},

"3": {
"nome": "Valter Vinícius Marinho de Lucena",
"email": "[email protected]",
"github": "valterlucena"
}
}
18 changes: 18 additions & 0 deletions src/lib/provas/2018/5.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"ano": "2018",
"questao": "5",
"area": "Matemática",
"enunciado": "Calcule o limite de $\lim_{x \to \infty }(\sqrt{x^4+x^2} + \sqrt{x^2+5x} - x² - x)$:",
"img_url": [],
"alternativas": {
"A": "1",
"B": "5",
"C": "∞",
"D": "0",
"E": "3"
},
"resposta": "E",
"autor": ["3"],
"temas": ["Limites"],
"justificativa": "$\lim_{x \to \infty }(\sqrt{x^4+x^2} + \sqrt{x^2+5x} - x^2 - x) \newline= \lim_{x \to \infty }(\sqrt{x^4+x^2} - x^2) + \lim_{x \to \infty }(\sqrt{x^2+5x} - x) \newline=\lim_{x \to \infty }[(\sqrt{x^4+x^2} - x^2)\frac{(\sqrt{x^4+x^2} + x^2)}{(\sqrt{x^4+x^2} + x^2)}] + \lim_{x \to \infty }[(\sqrt{x^2+5x} - x)\frac{(\sqrt{x^2+5x} + x)}{(\sqrt{x^2+5x} + x)}] \newline= \lim_{x \to \infty }(\frac{x^2}{\sqrt{x^4+x^2} + x^2}) + \lim_{x \to \infty }(\frac{5x}{\sqrt{x^2+5x} + x}) = \lim_{x \to \infty }[\frac{x^2}{x^2(\frac{\sqrt{x^4+x^2}}{x^2} + 1)}] + \lim_{x \to \infty }[\frac{5x}{x(\frac{\sqrt{x^2+5x}}{x} + 1)}]\newline= \lim_{x \to \infty }(\frac{1}{\frac{\sqrt{x^4+x^2}}{x^2} + 1}) + \lim_{x \to \infty }(\frac{5}{\frac{\sqrt{x^2+5x}}{x} + 1})\newline=\lim_{x \to \infty }[\frac{1}{\frac{\sqrt{x^4(1+\frac{1}{x^2})}}{x^2} + 1}] + \lim_{x \to \infty }[\frac{5}{\frac{\sqrt{x^2(1+\frac{5}{x})}}{x} + 1}]\newline=\lim_{x \to \infty }[\frac{1}{\frac{x^2\sqrt{1+\frac{1}{x^2}}}{x^2} + 1}] + \lim_{x \to \infty }[\frac{5}{\frac{x\sqrt{1+\frac{5}{x}}}{x} + 1}]\newline=\lim_{x \to \infty }(\frac{1}{\sqrt{1+\frac{1}{x^2}} + 1}) + \lim_{x \to \infty }(\frac{5}{\sqrt{1+\frac{5}{x}} + 1})\newline=\frac{1}{\sqrt{1+0} + 1} + \frac{5}{\sqrt{1+0} + 1}\newline=\frac{1}{\sqrt{1} + 1} + \frac{5}{\sqrt{1} + 1}\newline=\frac{1}{2} + \frac{5}{2} = 3$"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Acredito que aqui teríamos que colocar uma imagem ao invés da fórmula, testei no katex e não renderizou :'(

}