-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a conversion script from huggingface to NeMo2 checkpoint format for
ESM-2. Signed-off-by: Peter St. John <[email protected]>
- Loading branch information
Showing
4 changed files
with
256 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
('esm.embeddings.word_embeddings.weight', torch.float32, torch.Size([33, 320]))('esm.embeddings.position_embeddings.weight', torch.float32, torch.Size([1026, 320]))('esm.encoder.layer.0.attention.self.query.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.0.attention.self.query.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.0.attention.self.key.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.0.attention.self.key.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.0.attention.self.value.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.0.attention.self.value.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.0.attention.self.rotary_embeddings.inv_freq', torch.float32, torch.Size([8]))('esm.encoder.layer.0.attention.output.dense.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.0.attention.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.0.attention.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.0.attention.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.0.intermediate.dense.weight', torch.float32, torch.Size([1280, 320]))('esm.encoder.layer.0.intermediate.dense.bias', torch.float32, torch.Size([1280]))('esm.encoder.layer.0.output.dense.weight', torch.float32, torch.Size([320, 1280]))('esm.encoder.layer.0.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.0.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.0.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.1.attention.self.query.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.1.attention.self.query.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.1.attention.self.key.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.1.attention.self.key.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.1.attention.self.value.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.1.attention.self.value.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.1.attention.self.rotary_embeddings.inv_freq', torch.float32, torch.Size([8]))('esm.encoder.layer.1.attention.output.dense.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.1.attention.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.1.attention.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.1.attention.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.1.intermediate.dense.weight', torch.float32, torch.Size([1280, 320]))('esm.encoder.layer.1.intermediate.dense.bias', torch.float32, torch.Size([1280]))('esm.encoder.layer.1.output.dense.weight', torch.float32, torch.Size([320, 1280]))('esm.encoder.layer.1.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.1.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.1.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.2.attention.self.query.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.2.attention.self.query.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.2.attention.self.key.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.2.attention.self.key.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.2.attention.self.value.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.2.attention.self.value.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.2.attention.self.rotary_embeddings.inv_freq', torch.float32, torch.Size([8]))('esm.encoder.layer.2.attention.output.dense.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.2.attention.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.2.attention.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.2.attention.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.2.intermediate.dense.weight', torch.float32, torch.Size([1280, 320]))('esm.encoder.layer.2.intermediate.dense.bias', torch.float32, torch.Size([1280]))('esm.encoder.layer.2.output.dense.weight', torch.float32, torch.Size([320, 1280]))('esm.encoder.layer.2.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.2.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.2.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.3.attention.self.query.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.3.attention.self.query.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.3.attention.self.key.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.3.attention.self.key.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.3.attention.self.value.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.3.attention.self.value.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.3.attention.self.rotary_embeddings.inv_freq', torch.float32, torch.Size([8]))('esm.encoder.layer.3.attention.output.dense.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.3.attention.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.3.attention.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.3.attention.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.3.intermediate.dense.weight', torch.float32, torch.Size([1280, 320]))('esm.encoder.layer.3.intermediate.dense.bias', torch.float32, torch.Size([1280]))('esm.encoder.layer.3.output.dense.weight', torch.float32, torch.Size([320, 1280]))('esm.encoder.layer.3.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.3.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.3.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.4.attention.self.query.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.4.attention.self.query.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.4.attention.self.key.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.4.attention.self.key.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.4.attention.self.value.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.4.attention.self.value.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.4.attention.self.rotary_embeddings.inv_freq', torch.float32, torch.Size([8]))('esm.encoder.layer.4.attention.output.dense.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.4.attention.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.4.attention.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.4.attention.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.4.intermediate.dense.weight', torch.float32, torch.Size([1280, 320]))('esm.encoder.layer.4.intermediate.dense.bias', torch.float32, torch.Size([1280]))('esm.encoder.layer.4.output.dense.weight', torch.float32, torch.Size([320, 1280]))('esm.encoder.layer.4.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.4.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.4.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.5.attention.self.query.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.5.attention.self.query.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.5.attention.self.key.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.5.attention.self.key.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.5.attention.self.value.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.5.attention.self.value.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.5.attention.self.rotary_embeddings.inv_freq', torch.float32, torch.Size([8]))('esm.encoder.layer.5.attention.output.dense.weight', torch.float32, torch.Size([320, 320]))('esm.encoder.layer.5.attention.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.5.attention.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.5.attention.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.5.intermediate.dense.weight', torch.float32, torch.Size([1280, 320]))('esm.encoder.layer.5.intermediate.dense.bias', torch.float32, torch.Size([1280]))('esm.encoder.layer.5.output.dense.weight', torch.float32, torch.Size([320, 1280]))('esm.encoder.layer.5.output.dense.bias', torch.float32, torch.Size([320]))('esm.encoder.layer.5.LayerNorm.weight', torch.float32, torch.Size([320]))('esm.encoder.layer.5.LayerNorm.bias', torch.float32, torch.Size([320]))('esm.encoder.emb_layer_norm_after.weight', torch.float32, torch.Size([320]))('esm.encoder.emb_layer_norm_after.bias', torch.float32, torch.Size([320]))('esm.contact_head.regression.weight', torch.float32, torch.Size([1, 120]))('esm.contact_head.regression.bias', torch.float32, torch.Size([1]))('lm_head.bias', torch.float32, torch.Size([33]))('lm_head.dense.weight', torch.float32, torch.Size([320, 320]))('lm_head.dense.bias', torch.float32, torch.Size([320]))('lm_head.layer_norm.weight', torch.float32, torch.Size([320]))('lm_head.layer_norm.bias', torch.float32, torch.Size([320]))('lm_head.decoder.weight', torch.float32, torch.Size([33, 320])) |
173 changes: 173 additions & 0 deletions
173
sub-packages/bionemo-esm2/src/bionemo/esm2/model/convert.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: LicenseRef-Apache2 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from pathlib import Path | ||
|
||
import torch | ||
from nemo.lightning import io, teardown | ||
from nemo.lightning.pytorch.utils import dtype_from_hf | ||
from transformers import AutoConfig as HFAutoConfig | ||
from transformers import AutoModelForMaskedLM | ||
|
||
from bionemo.esm2.data.tokenizer import BioNeMoESMTokenizer, get_tokenizer | ||
from bionemo.esm2.model.model import ESM2Config | ||
from bionemo.llm.lightning import BionemoLightningModule | ||
from bionemo.llm.model.biobert.lightning import biobert_lightning_module | ||
|
||
|
||
@io.model_importer(BionemoLightningModule, "hf") | ||
class HFESM2Importer(io.ModelConnector[AutoModelForMaskedLM, BionemoLightningModule]): | ||
"""Converts a Hugging Face ESM-2 model to a NeMo ESM-2 model.""" | ||
|
||
def init(self) -> BionemoLightningModule: | ||
"""Initialize the converted model.""" | ||
return biobert_lightning_module(self.config, tokenizer=self.tokenizer) | ||
|
||
def apply(self, output_path: Path) -> Path: | ||
"""Applies the transformation. | ||
Largely inspired by | ||
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemo-2.0/features/hf-integration.html | ||
""" | ||
source = AutoModelForMaskedLM.from_pretrained(str(self), trust_remote_code=True, torch_dtype="auto") | ||
target = self.init() | ||
trainer = self.nemo_setup(target) | ||
self.convert_state(source, target) | ||
self.nemo_save(output_path, trainer) | ||
|
||
print(f"Converted ESM-2 model to Nemo, model saved to {output_path}") | ||
|
||
teardown(trainer, target) | ||
del trainer, target | ||
|
||
return output_path | ||
|
||
def convert_state(self, source, target): | ||
"""Converting HF state dict to NeMo state dict.""" | ||
mapping = { | ||
# "esm.encoder.layer.0.attention.self.rotary_embeddings.inv_freq": "rotary_pos_emb.inv_freq", | ||
"esm.encoder.layer.*.attention.output.dense.weight": "encoder.layers.*.self_attention.linear_proj.weight", | ||
"esm.encoder.layer.*.attention.output.dense.bias": "encoder.layers.*.self_attention.linear_proj.bias", | ||
"esm.encoder.layer.*.attention.LayerNorm.weight": "encoder.layers.*.self_attention.linear_qkv.layer_norm_weight", | ||
"esm.encoder.layer.*.attention.LayerNorm.bias": "encoder.layers.*.self_attention.linear_qkv.layer_norm_bias", | ||
"esm.encoder.layer.*.intermediate.dense.weight": "encoder.layers.*.mlp.linear_fc1.weight", | ||
"esm.encoder.layer.*.intermediate.dense.bias": "encoder.layers.*.mlp.linear_fc1.bias", | ||
"esm.encoder.layer.*.output.dense.weight": "encoder.layers.*.mlp.linear_fc2.weight", | ||
"esm.encoder.layer.*.output.dense.bias": "encoder.layers.*.mlp.linear_fc2.bias", | ||
"esm.encoder.layer.*.LayerNorm.weight": "encoder.layers.*.mlp.linear_fc1.layer_norm_weight", | ||
"esm.encoder.layer.*.LayerNorm.bias": "encoder.layers.*.mlp.linear_fc1.layer_norm_bias", | ||
"esm.encoder.emb_layer_norm_after.weight": "encoder.final_layernorm.weight", | ||
"esm.encoder.emb_layer_norm_after.bias": "encoder.final_layernorm.bias", | ||
"lm_head.dense.weight": "lm_head.dense.weight", | ||
"lm_head.dense.bias": "lm_head.dense.bias", | ||
"lm_head.layer_norm.weight": "lm_head.layer_norm.weight", | ||
"lm_head.layer_norm.bias": "lm_head.layer_norm.bias", | ||
} | ||
|
||
# lm_head.bias | ||
return io.apply_transforms( | ||
source, | ||
target, | ||
mapping=mapping, | ||
transforms=[_pad_embeddings, _pad_bias, _import_qkv_weight, _import_qkv_bias], | ||
) | ||
|
||
@property | ||
def tokenizer(self) -> BioNeMoESMTokenizer: | ||
"""We just have the one tokenizer for ESM-2.""" | ||
return get_tokenizer() | ||
|
||
@property | ||
def config(self) -> ESM2Config: | ||
"""Returns the transformed ESM-2 config given the model tag.""" | ||
source = HFAutoConfig.from_pretrained(str(self), trust_remote_code=True) | ||
output = ESM2Config( | ||
num_layers=source.num_hidden_layers, | ||
hidden_size=source.hidden_size, | ||
ffn_hidden_size=source.intermediate_size, | ||
position_embedding_type="rope", | ||
num_attention_heads=source.num_attention_heads, | ||
seq_length=source.max_position_embeddings, | ||
fp16=(dtype_from_hf(source) == torch.float16), | ||
bf16=(dtype_from_hf(source) == torch.bfloat16), | ||
params_dtype=dtype_from_hf(source), | ||
) | ||
|
||
return output | ||
|
||
|
||
@io.state_transform( | ||
source_key="esm.embeddings.word_embeddings.weight", | ||
target_key="embedding.word_embeddings.weight", | ||
) | ||
def _pad_embeddings(ctx: io.TransformCTX, source_embed): | ||
"""Pad the embedding layer to the new input dimension.""" | ||
nemo_embedding_dimension = ctx.target.config.make_vocab_size_divisible_by | ||
hf_embedding_dimension = source_embed.size(0) | ||
num_padding_rows = nemo_embedding_dimension - hf_embedding_dimension | ||
padding_rows = torch.zeros(num_padding_rows, source_embed.size(1)) | ||
return torch.cat((source_embed, padding_rows), dim=0) | ||
|
||
|
||
@io.state_transform( | ||
source_key="lm_head.bias", | ||
target_key="output_layer.bias", | ||
) | ||
def _pad_bias(ctx: io.TransformCTX, source_bias): | ||
"""Pad the embedding layer to the new input dimension.""" | ||
nemo_embedding_dimension = ctx.target.config.make_vocab_size_divisible_by | ||
hf_embedding_dimension = source_bias.size(0) | ||
output_bias = torch.zeros(nemo_embedding_dimension, dtype=source_bias.dtype, device=source_bias.device) | ||
output_bias[:hf_embedding_dimension] = source_bias | ||
return output_bias | ||
|
||
|
||
@io.state_transform( | ||
source_key=( | ||
"esm.encoder.layer.*.attention.self.query.weight", | ||
"esm.encoder.layer.*.attention.self.key.weight", | ||
"esm.encoder.layer.*.attention.self.value.weight", | ||
), | ||
target_key="encoder.layers.*.self_attention.linear_qkv.weight", | ||
) | ||
def _import_qkv_weight(ctx: io.TransformCTX, query, key, value): | ||
"""Pad the embedding layer to the new input dimension.""" | ||
concat_weights = torch.cat((query, key, value), dim=0) | ||
input_shape = concat_weights.size() | ||
np = ctx.target.config.num_attention_heads | ||
concat_weights = concat_weights.view(3, np, -1, query.size()[-1]) | ||
concat_weights = concat_weights.transpose(0, 1).contiguous() | ||
concat_weights = concat_weights.view(*input_shape) | ||
return concat_weights | ||
|
||
|
||
@io.state_transform( | ||
source_key=( | ||
"esm.encoder.layer.*.attention.self.query.bias", | ||
"esm.encoder.layer.*.attention.self.key.bias", | ||
"esm.encoder.layer.*.attention.self.value.bias", | ||
), | ||
target_key="encoder.layers.*.self_attention.linear_qkv.bias", | ||
) | ||
def _import_qkv_bias(ctx: io.TransformCTX, query, key, value): | ||
"""Pad the embedding layer to the new input dimension.""" | ||
concat_biases = torch.cat((query, key, value), dim=0) | ||
input_shape = concat_biases.size() | ||
np = ctx.target.config.num_attention_heads | ||
concat_biases = concat_biases.view(3, np, -1) | ||
concat_biases = concat_biases.transpose(0, 1).contiguous() | ||
concat_biases = concat_biases.view(*input_shape) | ||
return concat_biases |
Oops, something went wrong.