Skip to content

JoshuaEbenezer/hdrpatchmax

Repository files navigation

HDRPatchMAX: No-Reference Video Quality Assessment for HDR and SDR using contrast-based segmentation

This repository contains code for HDRPatchMAX and HDRMAX.

HDRPatchMAX

Requirements

Create a conda environment from the specification file hdrpatchmax_spec-file.txt using


conda create --name hdrpatchmax --file conda_spec-file.txt

Activate the environment. There are some packages only pip can install, so also do


pip install -r pip_requirements.txt

You should now be good to go!

Testing

First extract features from the video whose quality you want to measure.

To extract features, run (for eg.)


python3 hdrpatchmax.py --input_file I.yuv --results_file O.z --width 3840 --height 2160 --bit_depth 10 --color_space BT2020

Then run


python3 test_single_video.py --feature_file O.z

This will output a single quality score.

Feature extraction

To extract features, run (for eg.)


python3 hdrpatchmax.py --input_file I.yuv --results_file O.z --width 3840 --height 2160 --bit_depth 10 --color_space BT2020

Training

Run


python3 randomforest.py --score_file score.csv --feature_folder ./folder --train_and_test

to evaluate. Other options can be seen with the -h option.

HDRMAX

Only feature extraction is supported for HDRMAX.

Feature extraction

To extract features, run (for eg.)


python3 hdrmax.py --input_file I.yuv --results_file O.z --width 3840 --height 2160 --bit_depth 10 --color_space BT2020

HDRMAX features can be combined with features from other VQA algorithms and jointly trained with a Random Forest or SVR to predict VQA for HDR and SDR. HDRMAX features make SDR VQA algorithms robust to bit depth.

About

NR VQA algorithm for HDR vs SDR comparison

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages