-
Notifications
You must be signed in to change notification settings - Fork 0
/
hdrpatchmax.py
337 lines (254 loc) · 11.5 KB
/
hdrpatchmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from joblib import Parallel,delayed
from utils.hdr_utils import yuv_read
import numpy as np
import cv2
import os
import scipy.ndimage
import joblib
import niqe
import save_stats
from numba import jit,prange
import argparse
import time
parser = argparse.ArgumentParser(description='Generate HDR PatchMAX features from a single video')
parser.add_argument('--input_file',help='Input video file')
parser.add_argument('--results_file',help='File where features are stored')
parser.add_argument('--width', type=int)
parser.add_argument('--height', type=int)
parser.add_argument('--bit_depth', type=int,choices={8,10,12})
parser.add_argument('--color_space',choices={'BT2020','BT709'})
args = parser.parse_args()
C=1
def gen_gauss_window(lw, sigma):
sd = np.float32(sigma)
lw = int(lw)
weights = [0.0] * (2 * lw + 1)
weights[lw] = 1.0
sum = 1.0
sd *= sd
for ii in range(1, lw + 1):
tmp = np.exp(-0.5 * np.float32(ii * ii) / sd)
weights[lw + ii] = tmp
weights[lw - ii] = tmp
sum += 2.0 * tmp
for ii in range(2 * lw + 1):
weights[ii] /= sum
return weights
def compute_image_mscn_transform(image, C=1, avg_window=None, extend_mode='constant'):
if avg_window is None:
avg_window = gen_gauss_window(3, 7.0/6.0)
assert len(np.shape(image)) == 2
h, w = np.shape(image)
mu_image = np.zeros((h, w), dtype=np.float32)
var_image = np.zeros((h, w), dtype=np.float32)
image = np.array(image).astype('float32')
scipy.ndimage.correlate1d(image, avg_window, 0, mu_image, mode=extend_mode)
scipy.ndimage.correlate1d(mu_image, avg_window, 1, mu_image, mode=extend_mode)
scipy.ndimage.correlate1d(image**2, avg_window, 0, var_image, mode=extend_mode)
scipy.ndimage.correlate1d(var_image, avg_window, 1, var_image, mode=extend_mode)
var_image = np.sqrt(np.abs(var_image - mu_image**2))
return (image - mu_image)/(var_image + C), var_image, mu_image
def spatiotemporal_mscn(img_buffer,avg_window,extend_mode='mirror'):
st_mean = np.zeros((img_buffer.shape))
scipy.ndimage.correlate1d(img_buffer, avg_window, 0, st_mean, mode=extend_mode)
return st_mean
@jit(nopython=True)
def find_sts_locs(sts_slope,cy,cx,step,h,w):
if(np.abs(sts_slope)<1):
x_sts = np.arange(cx-int((step-1)/2),cx+int((step-1)/2)+1)
y = (cy-(x_sts-cx)*sts_slope).astype(np.int64)
y_sts = np.asarray([y[j] if y[j]<h else h-1 for j in range(step)])
else:
y_sts = np.arange(cy-int((step-1)/2),cy+int((step-1)/2)+1)
x= ((-y_sts+cy)/sts_slope+cx).astype(np.int64)
x_sts = np.asarray([x[j] if x[j]<w else w-1 for j in range(step)])
return x_sts,y_sts
def blockshaped(arr, nrows, ncols):
"""
Return an array of shape (n, nrows, ncols) where
n * nrows * ncols = arr.size
If arr is a 2D array, the returned array should look like n subblocks with
each subblock preserving the "physical" layout of arr.
"""
h, w = arr.shape
assert h % nrows == 0, f"{h} rows is not evenly divisible by {nrows}"
assert w % ncols == 0, f"{w} cols is not evenly divisible by {ncols}"
return (arr.reshape(h//nrows, nrows, -1, ncols)
.swapaxes(1,2)
.reshape(-1, nrows, ncols))
@jit(nopython=True)
def find_kurtosis_slice(Y3d_mscn,cy,cx,rst,rct,theta,h,step):
st_kurtosis = np.zeros((len(theta),))
data = np.zeros((len(theta),step**2))
for index,t in enumerate(theta):
rsin_theta = rst[:,index]
rcos_theta =rct[:,index]
x_sts,y_sts = cx+rcos_theta,cy+rsin_theta
data[index,:] =Y3d_mscn[:,y_sts*h+x_sts].flatten()
data_mu4 = np.mean((data[index,:]-np.mean(data[index,:]))**4)
data_var = np.var(data[index,:])
st_kurtosis[index] = data_mu4/(data_var**2+1e-4)
idx = (np.abs(st_kurtosis - 3)).argmin()
data_slice = data[idx,:]
return data_slice
def find_kurtosis_sts(grad_img_buffer,step,cy,cx,rst,rct,theta):
h = grad_img_buffer[step-1].shape[0]
gradY3d_mscn = np.reshape(grad_img_buffer.copy(),(step,-1))
sts_grad= [find_kurtosis_slice(gradY3d_mscn,cy[i],cx[i],rst,rct,theta,h,step) for i in range(len(cy))]
return sts_grad
def Y_compute_lnl(Y):
if(len(Y.shape)==2):
Y = np.expand_dims(Y,axis=2)
maxY = scipy.ndimage.maximum_filter(Y,size=(17,17,1))
minY = scipy.ndimage.minimum_filter(Y,size=(17,17,1))
Y_scaled = -1+(Y-minY)* 2/(1e-3+maxY-minY)
Y_transform = np.exp(np.abs(Y_scaled)*4)-1
Y_transform[Y_scaled<0] = -Y_transform[Y_scaled<0]
return Y_transform
def extract_ptlebrisque_patches(img1, patch_size,ptle):
Y_mscn,Y_std,_ = save_stats.compute_image_mscn_transform(img1,C=0.001,extend_mode='reflect')
Y_patches = blockshaped(Y_mscn,patch_size,patch_size)
Y_std_patches = blockshaped(Y_std,patch_size,patch_size)
brisque_patch_feats = np.asarray(Parallel(n_jobs=5)(delayed(save_stats.extract_subband_feats)(patch) for patch in Y_patches))
std_arr = np.average(Y_std_patches,axis=(1,2))
percentiles = np.percentile(std_arr,[ptle,100-ptle])
p1 = np.where(std_arr<=percentiles[0])
p2 = np.where((std_arr>percentiles[0]) & (std_arr<percentiles[1]))
p3 = np.where(std_arr>=percentiles[1])
p_list = [p1,p2,p3]
brisque_ptle_feats = np.hstack([np.average(brisque_patch_feats[p],0) \
if len(p)>0 else np.average(brisque_patch_feats,0) for p in p_list])
return brisque_ptle_feats
def unblockshaped(arr, h, w):
"""
Return an array of shape (h, w) where
h * w = arr.size
If arr is of shape (n, nrows, ncols), n sublocks of shape (nrows, ncols),
then the returned array preserves the "physical" layout of the sublocks.
"""
n, nrows, ncols = arr.shape
return (arr.reshape(h//nrows, -1, nrows, ncols)
.swapaxes(1,2)
.reshape(h, w))
def hdrpatchmax_fromvid(filename,filename_out,width,height,framenos,bit_depth):
if(os.path.exists(filename)==False):
print("Input video file does not exist")
return
if(os.path.exists(filename_out)):
print("Output feature file already exists")
return
st_time_length = 5
t = np.arange(0,st_time_length)
a=0.5
avg_window = t*(1-a*t)*np.exp(-2*a*t)
avg_window = np.flip(avg_window)
#
theta = np.arange(0,np.pi,np.pi/6)
ct = np.cos(theta)
st = np.sin(theta)
lower_r = int((st_time_length+1)/2)-1
higher_r = int((st_time_length+1)/2)
r = np.arange(-lower_r,higher_r)
rct = np.round(np.outer(r,ct))
rst = np.round(np.outer(r,st))
rct = rct.astype(np.int32)
rst = rst.astype(np.int32)
time_diff_list = []
step = st_time_length
cy, cx = np.mgrid[step:height-step*4:step*4, step:width-step*4:step*4].reshape(2,-1).astype(int) # these will be the centers of each block
dcy, dcx = np.mgrid[step:height//2-step*4:step*4, step:width//2-step*4:step*4].reshape(2,-1).astype(int) # these will be the centers of each block
grad_img_buffer = np.zeros((st_time_length,height,width))
graddown_img_buffer =np.zeros((st_time_length,height//2,width//2))
i = 0
r1 = len(np.arange(step,height-step*4,step*4))
r2 = len(np.arange(step,width-step*4,step*4))
dr1 = len(np.arange(step,height//2-step*4,step*4))
dr2 = len(np.arange(step,width//2-step*4,step*4))
X_list = []
spatavg_list = []
feat_sd_list = []
sd_list= []
j=0
i = 0
C = 1e-3
for framenum in range(framenos):
Y_pq,_,_ = yuv_read(filename,framenum,height,width,bit_depth)
dY_pq = cv2.resize(Y_pq,(width//2,height//2),interpolation=cv2.INTER_CUBIC)
Y_pq =Y_pq.astype(np.float32)
dY_pq = dY_pq.astype(np.float32)
Y = Y_pq/((2**bit_depth)-1)
dY = dY_pq/((2**bit_depth)-1)
#
start = time.time()
gradient_x = cv2.Sobel(Y,ddepth=-1,dx=1,dy=0)
gradient_y = cv2.Sobel(Y,ddepth=-1,dx=0,dy=1)
gradient_mag = np.sqrt(gradient_x**2+gradient_y**2)
gradient_x_down = cv2.Sobel(dY,ddepth=-1,dx=1,dy=0)
gradient_y_down = cv2.Sobel(dY,ddepth=-1,dx=0,dy=1)
gradient_mag_down = np.sqrt(gradient_x_down**2+gradient_y_down**2)
gradY_mscn,_,_ = compute_image_mscn_transform(gradient_mag)
dgradY_mscn,_,_ = compute_image_mscn_transform(gradient_mag_down)
niqe_feats = niqe.compute_niqe_features(Y,C=C)
full_scale_features = extract_ptlebrisque_patches(Y,20,10)
half_scale_features = extract_ptlebrisque_patches(dY,10,10)
patchmax = np.concatenate((full_scale_features,half_scale_features))
Y_pq_nl = np.squeeze(Y_compute_lnl(Y))
Y_down_pq_nl = np.squeeze(Y_compute_lnl(dY))
Y_mscn_pq_nl,_,_ = save_stats.compute_image_mscn_transform(Y_pq_nl,C=0.001)
dY_mscn_pq_nl,_,_ =save_stats.compute_image_mscn_transform(Y_down_pq_nl,C=0.001)
brisque_nl_fullscale = save_stats.extract_subband_feats(Y_mscn_pq_nl)
brisque_nl_halfscale = save_stats.extract_subband_feats(dY_mscn_pq_nl)
brisque_nl = np.concatenate((brisque_nl_fullscale,brisque_nl_halfscale),axis=0)
feat_sd_list.append(np.concatenate((brisque_nl,patchmax)))
spatavg_list.append(np.concatenate((niqe_feats,patchmax,brisque_nl)))
grad_img_buffer[i,:,:] =gradY_mscn
graddown_img_buffer[i,:,:]=dgradY_mscn
i=i+1
#
# compute ST Gradient chips and rolling standard deviation
if (i>=st_time_length):
# temporal filtering
grad3d_mscn = spatiotemporal_mscn(grad_img_buffer,avg_window)
graddown3d_mscn = spatiotemporal_mscn(graddown_img_buffer,avg_window)
# compute rolling standard deviation
sd_feats = np.std(feat_sd_list,axis=0)
sd_list.append(sd_feats)
feat_sd_list = []
# ST chips
sts_grad = find_kurtosis_sts(grad3d_mscn,step,cy,cx,rst,rct,theta)
dsts_grad = find_kurtosis_sts(graddown3d_mscn,step,dcy,dcx,rst,rct,theta)
sts_grad= unblockshaped(np.reshape(sts_grad,(-1,st_time_length,st_time_length)),r1*st_time_length,r2*st_time_length)
dsts_grad= unblockshaped(np.reshape(dsts_grad,(-1,st_time_length,st_time_length)),dr1*st_time_length,dr2*st_time_length)
grad_feats = save_stats.extract_subband_feats(sts_grad)
dgrad_feats = save_stats.extract_subband_feats(dsts_grad)
allst_feats = np.concatenate((grad_feats,dgrad_feats),axis=0)
X_list.append(allst_feats)
# refresh buffer
grad_img_buffer = np.zeros((st_time_length,height,width))
graddown_img_buffer =np.zeros((st_time_length,int(height/2),int(width/2)))
i=0
end = time.time()
print(end-start)
time_diff_list.append(end-start)
print(np.average(time_diff_list))
X1 = np.average(spatavg_list,axis=0)
X2 = np.average(sd_list,axis=0)
X3 = np.average(X_list,axis=0)
X = np.concatenate((X1,X2,X3),axis=0)
train_dict = {"features":X}
joblib.dump(train_dict,filename_out)
return
def main():
args = parser.parse_args()
vid_stream = open(args.input_file,'r')
vid_stream.seek(0, os.SEEK_END)
vid_filesize = vid_stream.tell()
if(args.bit_depth==10 or args.bit_depth==12):
multiplier = 3
elif(args.bit_depth==8):
multiplier=1.5
vid_T = int(vid_filesize/(args.height*args.width*multiplier))
hdrpatchmax_fromvid(args.input_file,args.results_file,args.width,args.height,vid_T,args.bit_depth)
if __name__ == '__main__':
# print(__doc__)
main()