Skip to content

Enhancing the Performance of Transformer-based Spiking Neural Networks by SNN-optimized Downsampling with Precise Gradient Backpropagation

License

Notifications You must be signed in to change notification settings

zhouchenlin2096/Spikingformer-CML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Enhancing the Performance of Transformer-based Spiking Neural Networks by SNN-optimized Downsampling with Precise Gradient Backpropagation, Arxiv 2023

SGLFormer: Spiking Global-Local-Fusion Transformer with high performance, This link

Our CML models achieve the state-of-the-art performance on several datasets (eg. 77.64 % on ImageNet, 96.04 % on CIFAR10, 80.37 % on CIFAR100, 81.4% on CIFAR10-DVS) in directly trained spiking neural networks in 2023/05. Our model achieves 78.46 % on ImageNet with 288 * 288 resolution.

Our newly improved model with CML, named SGLFormer, has achieved SOTA performance on several datasets (eg. 83.73 % on ImageNet, 96.76 % on CIFAR10, 82.26 % on CIFAR100, 82.9% on CIFAR10-DVS) in directly trained SNNs in 2024/03.



News

[2024.3.12] Our work with CML has been accepted in Frontiers in Neuroscience 2024.

[2023.9.11] Update origin_logs.

[2023.8.18] Update trained models.

Reference

If you find this repo useful, please consider citing:

@ARTICLE{10.3389/fnins.2024.1371290,
  AUTHOR={Zhang, Han  and Zhou, Chenlin  and Yu, Liutao  and Huang, Liwei  and Ma, Zhengyu  and Fan, Xiaopeng  and Zhou, Huihui  and Tian, Yonghong },
  TITLE={SGLFormer: Spiking Global-Local-Fusion Transformer with high performance},
  JOURNAL={Frontiers in Neuroscience},
  VOLUME={18},
  YEAR={2024},
  URL={https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1371290},
  DOI={10.3389/fnins.2024.1371290},
  ISSN={1662-453X}
}

@misc{zhou2023enhancing,
      title={Enhancing the Performance of Transformer-based Spiking Neural Networks by Improved Downsampling with Precise Gradient Backpropagation}, 
      author={Chenlin Zhou and Han Zhang and Zhaokun Zhou and Liutao Yu and Zhengyu Ma and Huihui Zhou and Xiaopeng Fan and Yonghong Tian},
      year={2023},
      eprint={2305.05954},
      archivePrefix={arXiv},
      primaryClass={cs.NE}
}

Main results on ImageNet-1K

Model Resolution T Param. Top-1 Acc Download
CML + Spikformer-8-384 224x224 4 16.81M 72.73 -
CML + Spikformer-8-512 224x224 4 29.68M 75.61 -
CML + Spikformer-8-768 224x224 4 66.34M 77.34 -
CML + Spikingformer-8-384 224x224 4 16.81M 74.35 -
CML + Spikingformer-8-512 224x224 4 29.68M 76.54 -
CML + Spikingformer-8-768 224x224 4 66.34M 77.64 here
CML + Spikingformer-8-768 288x288 4 66.34M 78.46 -

Download password: abcd

Main results on CIFAR10/CIFAR100

Model T Param. CIFAR10 Top-1 Acc Download CIFAR100 Top-1 Acc
CML + Spikformer-4-256 4 4.15M 94.82 - 77.64
CML + Spikformer-2-384 4 5.76M 95.63 - 78.75
CML + Spikformer-4-384 4 9.32M 95.93 - 79.65
CML + Spikformer-4-384-400E 4 9.32M 96.04 - 80.02
CML + Spikingformer-4-256 4 4.15M 94.94 - 78.19
CML + Spikingformer-2-384 4 5.76M 95.54 - 78.87
CML + Spikingformer-4-384 4 9.32M 95.81 - 79.98
CML + Spikingformer-4-384-400E 4 9.32M 95.95 here 80.37

Download password: abcd

Main results on CIFAR10-DVS/DVS128

Model T Param. CIFAR10 DVS Top-1 Acc DVS 128 Top-1 Acc
CML + Spikformer-2-256 10 2.57M 79.2 97.6
CML + Spikformer-2-256 16 2.57M 80.9 98.6
CML + Spikingformer-2-256 10 2.57M 80.5 97.2
CML + Spikingformer-2-256 16 2.57M 81.4 98.6

Requirements

timm==0.6.12; cupy==11.4.0; torch==1.12.1; spikingjelly==0.0.0.0.12; pyyaml;

data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Train

Training on ImageNet

Setting hyper-parameters in imagenet.yml

cd imagenet
python -m torch.distributed.launch --nproc_per_node=8 train.py

Testing ImageNet Val data

Download the trained model first here.

cd imagenet
python test.py

Training on CIFAR10

Setting hyper-parameters in cifar10.yml

cd cifar10
python train.py

Training on CIFAR100

Setting hyper-parameters in cifar100.yml

cd cifar10
python train.py

Training on DVS128 Gesture

cd dvs128-gesture
python train.py

Training on CIFAR10-DVS

cd cifar10-dvs
python train.py

Acknowledgement & Contact Information

Related project: Spikingformer, spikformer, pytorch-image-models, spikingjelly.

For help or issues using this git, please submit a GitHub issue.

For other communications related to this git, please contact [email protected] or [email protected].

Releases

No releases published

Packages

No packages published

Languages