Skip to content

The official implementation of 'FakeShield: Explainable Image Forgery Detection and Localization via Multi-modal Large Language Models'

Notifications You must be signed in to change notification settings

zhipeixu/FakeShield

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 

Repository files navigation

Image Alt Text

FakeShield: Explainable Image Forgery Detection and Localization via Multi-modal Large Language Models

Zhipei Xu, Xuanyu Zhang, Runyi Li, Zecheng Tang, Qing Huang, Jian Zhang

School of Electronic and Computer Engineering, Peking University

arXiv Home Page zhihu

News

  • 🔥 We have released FakeShield: Explainable Image Forgery Detection and Localization via Multi-modal Large Language Models. We present explainable IFDL tasks, constructing the MMTD-Set dataset and the FakeShield framework. Check out the paper. The code and dataset are coming soon

Abstract

The rapid development of generative AI is a double-edged sword, which not only facilitates content creation but also makes image manipulation easier and more difficult to detect. Although current image forgery detection and localization (IFDL) methods are generally effective, they tend to face two challenges: 1) black-box nature with unknown detection principle, 2) limited generalization across diverse tampering methods (e.g., Photoshop, DeepFake, AIGC-Editing). To address these issues, we propose the explainable IFDL task and design FakeShield, a multi-modal framework capable of evaluating image authenticity, generating tampered region masks, and providing a judgment basis based on pixel-level and image-level tampering clues. Additionally, we leverage GPT-4o to enhance existing IFDL datasets, creating the Multi-Modal Tamper Description dataSet (MMTD-Set) for training FakeShield’s tampering analysis capabilities. Meanwhile, we incorporate a Domain Tag-guided Explainable Forgery Detection Module (DTE-FDM) and a Multi-modal Forgery Localization Module (MFLM) to address various types of tamper detection interpretation and achieve forgery localization guided by detailed textual descriptions. Extensive experiments demonstrate that FakeShield effectively detects and localizes various tampering techniques, offering an explainable and superior solution compared to previous IFDL methods.

image

About

The official implementation of 'FakeShield: Explainable Image Forgery Detection and Localization via Multi-modal Large Language Models'

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published