Skip to content
/ DDCV Public

A Visualized Shiny App to Evaluate Drug-Drug Interaction

License

Notifications You must be signed in to change notification settings

xtmgah/DDCV

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

title output
DDCV Document
html_document
theme toc
journal
true
<style type="text/css"> /* CSS chunck 1 */ th { padding:5px;} td{ padding:5px;} </style>

DDCV Information

A Visualized Shiny App to Evaluate Drug-Drug Interaction

Project status: Version 4.0

<Author: Tongwu Zhang>

Website: http://xtmgah.shinyapps.io/DDCV/

License: DDCV is freely available under a GNU Public License (Version 2)

Citation: Please cite the following article if you use DDCV in your research

<Tongwu Zhang et al. Drug-Drug Combination Visualization (DDCV): Evaluation of Drug-Drug Interactions using Shiny by RStudio. 2015.(In Prepare)> Tongwu Zhang et al. Drug-Drug Combination Visualization (DDCV): Evaluation of Drug-Drug Interactions using Shiny by RStudio. 2015.

Description

Evaluation of synergy or antagonism of agents used in combination therapy is an integral part of cancer chemotherapy development. Simultaneous use of multiple methods enhances the donfidence of combination therapy. We developed a visualized R Shiny App to evaluated drug-drug synergy, additivity and antagonism using several published methodologies, including isobologram, combination index, curve-shift and universal surface response analysis.

Dependencies

Downloading

Both through "git clone" or directly download comparessed file are avaiable:

git clone "https://github.com/xtmgah/DDCV.git"
cd DDCV

Running

There are two methods runing with or without downloading software.

GitHub repository:

library(shiny)
options(download.file.method="wget",download.file.extra=" --no-check-certificate")
shiny::runGitHub('DDCV','xtmgah')

or

library(shiny)
options(download.file.method="wget",download.file.extra=" --no-check-certificate")
runUrl('https://github.com/xtmgah/DDCV/archive/master.zip')

Local running

cd DDCV

then

library(shiny)
runApp("../DDCV")

or

library(shiny)
source("DDCV.R")

Input CSV foramt

Matrix file format:

DrugA/DrugB 5000 5000 4000 4000 3000 3000 2250 2250 1500 1500 1000 1000 500 500 0 0
0.25 1609 1073 1459 1597 4112 3195 3709 3929 4661 5253 5539 5805 10590 10184 10931 15020
0.25 1624 1898 2248 2937 3943 5139 3709 4340 4914 5614 6187 11652 9942 20365 9838 16601
0.20 2493 1498 2688 2091 5485 5324 4496 4492 5523 5174 8353 9833 19715 19214 12129 27393
0.20 2355 1950 2935 3383 5765 7162 4391 4391 4418 5265 8693 15340 15973 30613 11614 23119
0.16 3260 1390 2459 1755 5411 5889 3652 4210 4529 5162 8222 9413 18849 18455 16028 29547
0.16 3062 1921 2525 2055 6834 6323 3916 4283 4752 4956 10748 8628 15369 16258 15027 26021
0.13 3151 2039 2791 2601 6610 7918 4368 5078 5688 6760 12354 11062 18436 17563 15035 30379
0.13 3135 1575 3027 1653 5787 6293 4482 4529 4712 5195 11267 10588 16639 16787 15949 27543
0.10 3050 1965 2269 2729 6574 8452 4877 5601 6234 6105 14047 12401 20608 21756 23021 33000
0.10 3436 2140 3240 1989 5352 6795 4087 5096 5873 6760 13580 12332 18349 21378 23320 30949
0.07 4124 2640 3865 2718 8161 7999 5596 6374 6277 7373 17441 14634 25133 27359 30202 39171
0.07 3554 2293 3212 3261 7027 9090 5595 6192 6669 7505 18393 12325 22932 24509 27126 33748
0.05 5348 2820 6340 3404 10168 11130 7206 8805 8285 8729 18293 16843 28392 31007 34998 42773
0.05 4735 2577 5241 2038 10784 9490 5159 9057 8954 9138 18213 15769 27259 27927 35539 40335
0.00 11291 13751 17858 13083 35769 36605 36398 37620 35052 36365 33880 33576 42494 41642 46640 46467
0.00 7244 13013 12074 9639 32487 31180 32986 34580 32642 35208 32367 32937 39519 41412 45332 46843

.........

Column3 file format:

DrugA DrugB Intensity
5000.00 73.4 921
5000.00 73.4 1011
2500.00 73.4 995
2500.00 73.4 1020
1250.00 73.4 976
1250.00 73.4 982
625.00 73.4 994
625.00 73.4 993
312.50 73.4 1018
312.50 73.4 1087
156.25 73.4 967
156.25 73.4 1003
78.12 73.4 997
78.12 73.4 1026
39.06 73.4 1031
39.06 73.4 982
19.53 73.4 1036
19.53 73.4 1046
9.77 73.4 997
9.77 73.4 995
0.00 73.4 1013
0.00 73.4 995
0.00 73.4 1018
0.00 73.4 981
5000.00 73.4 1059
5000.00 73.4 982
2500.00 73.4 1038
2500.00 73.4 995
1250.00 73.4 961
1250.00 73.4 1041
625.00 73.4 997
625.00 73.4 1040
312.50 73.4 1031
312.50 73.4 986
156.25 73.4 1000
156.25 73.4 1030
78.12 73.4 1035
78.12 73.4 1002
39.06 73.4 968
39.06 73.4 1006
19.53 73.4 957
19.53 73.4 1009
9.77 73.4 1048
9.77 73.4 1014
0.00 73.4 936
0.00 73.4 971
0.00 73.4 973
0.00 73.4 1024
5000.00 8.4 1093
5000.00 8.4 1040

..............

Example

Parameter Panel

IC50 Prediction

Single and Combination Drug IC50:

  | DrugA | DrugB | Combination (IC50 equivalent dose)  |

------| ------ | ------ |------ | IC50 | 2.01 | 6.24 | 0.64 |

Response Matrix Profile

Median Effect

Isobologram

Isobologram analysis has been used to make a graphical presentation of the interaction of two drugs.

Combination Index

Combination index provides a quantitative measure of the extent of drug interaction at a given effect level.

Curve-shift

Curve-shift analysis allows simultaneous presentation of the studied concentration-effect curves of single-agent and combination treatments in a single plot.

Universal Surface Response

Universal surface model approach provides a single value summarizing the nature of interaction for the totality of data on the combinations.

Contour Plots of Raw Data

About

A Visualized Shiny App to Evaluate Drug-Drug Interaction

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages