Skip to content

xiong-0371/FDARN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cross-Modal Federated Human Activity Recognition via Modality-Agnostic and Modality-Specific Representation Learning

Software requirements

  • numpy, scipy, torch, Pillow, matplotlib

  • To download the dependencies: pip3 install -r requirements.txt

  • Training requires minimum 12 GB of GPU memory for batch size of 32.

Produce experiments

  • There is a main file "main.py" which allows running all experiments.
  • The network is under the FLAlgorithms/users folder, marked as userfdarn.py.
  • It is noted that algorithm should be run at least 5 times and then the results are averaged.
  • To run training simply run
python main.py --dataset Epic --model dnn --batch_size 64 --learning_rate 0.001 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5
python main.py --dataset MM --model dnn --batch_size 32 --learning_rate 0.01 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5
python main.py --dataset ECM --model dnn --batch_size 32 --learning_rate 0.01 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5
python main.py --dataset Ego-exo --model dnn --batch_size 32 --learning_rate 0.01 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5

Datasets

  • Data should be placed under data/ folder.
  • Epic-Kitchens, Multimodal-EA and Stanford-ECM are all public datasets.
  • Ego-Exo-AR dataset is available to download at: https://drive.google.com/file/d/13HvPVGQE3Lm6ovKzVCGipxAUOmDdsJU0/view?usp=sharing (To protect user privacy, we only provide image features instead of original images.)
  • On the Epic-Kitchens dataset, we use 4 modalities (i.e., video, optical flow, audio and sensor) as input.
  • On the Multimodal-EA dataset, we use 2 modalities (i.e., video and sensor) as input.
  • On the Stanford-ECM dataset, we use 2 modalities (i.e., video and sensor) as input.
  • On the Ego-Exo-AR dataset, we use 2 modalities (i.e., image and sensor) as input.
  • Please refer to the PDF file in Supplementary Material for details of data statistics and feature extraction.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%