In this site, you can find relevant information attached to the article the A Taxonomy of quality metrics for cloud services. The research methodology and results are detailed in the next sections.
PLANNING
CONDUCTING 3. Primary Studies 4. Quality Assessment
REPORTING 5. Taxonomy of QoS metrics for cloud services
Defining the objective:
This research aims to systematically identify and taxonomically classify
available evidence on quality metrics for cloud services and provide a
holistic comparison to analyze potential limitations of existing research
The main research question addressed is:
What metrics have been used to evaluate the internal and external
quality of cloud services and how are they measured and used?
The resulting subquestions are:
• RQ1: What quality characteristics and attributes were evaluated?
• RQ2: What type of metrics were they?
─ RQ2.1: If the metric is base, what unit was used to calculate it?
─ RQ2.2: If the metric is derived, what measurement function and unit were used to calculate it?
• RQ3: Are there tools to support the measurement process, and, if so, which ones?
• RQ4: What type of measurement results from the metrics provided?
• RQ5: During which phases of the cloud service lifecycle were these metrics used?
• RQ6: For which type of stakeholders (cloud roles) are these metrics relevant?
• RQ7: To what type of cloud service (i.e., SaaS, PaaS, IaaS) were these metrics applied?
• RQ8: What cloud artifacts or resources were measured?
• RQ9: Which validation method was used to provide evidence about the metrics’ usefulness?
The search string selected is shown below:
Concept | Alternative Terms or Synonyms |
---|---|
Measure | ((metric* OR measur*) AND |
Quality | (QoS OR "quality of service" OR "quality model" OR "evaluation model" OR "assessment model" OR "quality in cloud" OR "quality of cloud") AND |
Cloud | (cloud*)) |
The search string applied to the same metadata (title, abstract and keyword) of the articles. The period or search dated from 2006 to November 2018.
The search string was adapted to each digital library (IEEE Xplore, ACM Digital Library, ScienceDirect y Springer Link) and listed below:
Digital Libray | Search String | Search Metadata | Constraints |
---|---|---|---|
IEEE Xplore | ((("Publication Title":attribute OR "Publication Title":characteristic OR "Abstract":attribute OR "Abstract":characteristic OR "IEEE Terms":attribute OR "IEEE Terms":characteristic OR "Author Keywords":attribute OR "Author Keywords":characteristic) OR ("Publication Title":metric OR "Publication Title":measur OR "Abstract":metric* OR "Abstract":measur* OR "IEEE Terms":metric* OR "IEEE Terms":measur* OR "Author Keywords":metric* OR "Author Keywords":measur*)) AND ("Publication Title":QoS OR "Publication Title":"quality of service" OR "Publication Title":"quality model" OR "Publication Title":"evaluation model" OR "Publication Title":"assessment model" OR "Publication Title":"quality in cloud" OR "Publication Title":"quality of cloud" OR "Abstract":QoS OR "Abstract":"quality of service" OR "Abstract":"quality model" OR "Abstract":"evaluation model" OR "Abstract":"assessment model" OR "Abstract":"quality in cloud" OR "Abstract":"quality of cloud" OR "IEEE Terms":QoS OR "IEEE Terms":"quality of service" OR "IEEE Terms":"quality model" OR "IEEE Terms":"evaluation model" OR "IEEE Terms":"assessment model" OR "IEEE Terms":"quality in cloud" OR "IEEE Terms":"quality of cloud" OR "Author Keywords":QoS OR "Author Keywords":"quality of service" OR "Author Keywords":"quality model" OR "Author Keywords":"evaluation model" OR "Author Keywords":"assessment model" OR "Author Keywords":"quality in cloud" OR "Author Keywords":"quality of cloud") AND ("Publication Title":cloud OR "Abstract":cloud OR "IEEE Terms":cloud OR "Author Keywords":cloud)) | Title, abstract and keywords | Content Type: Conference Publications and Journals & Magazines. Year: 2006-2018 |
ACM Digital Library | (Title:((attribute OR characteristic) OR (metric* OR measur*)) OR Abstract:((attribute OR characteristic) OR (metric* OR measur*)) OR Keyword:((attribute OR characteristic) OR (metric* OR measur*))) AND (Title:(QoS "quality of service" "quality model" "evaluation model" "assessment model" "quality in cloud" "quality of cloud") OR Abstract:(QoS "quality of service" "quality model" "evaluation model" "assessment model" "quality in cloud" "quality of cloud") OR Keyword:(QoS "quality of service" "quality model" "evaluation model" "assessment model" "quality in cloud" "quality of cloud")) AND (Title:(cloud) OR Abstract:(cloud) OR Keyword:(cloud)) | Title, abstract and keywords | Published since: 2006 |
ScienceDirect | TITLE-ABSTR-KEY(cloud ((attribute OR characteristic) OR (metric OR measur)) AND (QoS OR "quality of service" OR "quality model" OR "evaluation model" OR "assessment model" OR "quality in cloud" OR "quality of cloud")) | Title, abstract and keywords | Pub-date > 2005. Content type: Journal. |
SpringerLink | cloud* AND (attribute* OR characteristic* OR measur* OR metric*) AND (QoS OR "quality of service" OR "quality model" OR "evaluation model" OR "assessment model" OR "quality in cloud" OR "quality of cloud") | Full text | Content Type: Article. Discipline: Computer Science Language: English. |
In this subsection, we present the list of papers selected.
Code | Primary Studies |
---|---|
S01 | Abd, S. K., Al-Haddad, S. A. R., Hashim, F., Abdullah, A. B. H. J., & Yussof, S. (2017). An effective approach for managing power consumption in cloud computing infrastructure. Journal of Computational Science, 21, 349–360. https://doi.org/https://doi.org/10.1016/j.jocs.2016.11.007 |
S02 | Abdeladim, A., Baina, S., & Baina, K. (2014). Elasticity and scalability centric quality model for the cloud. In 2014 Third IEEE International Colloquium in Information Science and Technology (CIST) (pp. 135–140). http://doi.org/10.1109/CIST.2014.7016607 |
S03 | Abrahão, S., & Insfran, E. (2017). Models@runtime for Monitoring Cloud Services in Google App Engine. In 2017 IEEE World Congress on Services (SERVICES) (pp. 30–35). https://doi.org/10.1109/SERVICES.2017.14 |
S04 | Alam, A. F. B., Soltanian, A., Yangui, S., Salahuddin, M. A., Glitho, R., & Elbiaze, H. (2016). A Cloud Platform-as-a-Service for multimedia conferencing service provisioning. In 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 289–294). https://doi.org/10.1109/ISCC.2016.7543756 |
S05 | Al-Jawad, A., Trestian, R., Shah, P., & Gemikonakli, O. (2015). BaProbSDN: A probabilistic-based QoS routing mechanism for Software Defined Networks. In Network Softwarization (NetSoft), 2015 1st IEEE Conference on (pp. 1–5). http://doi.org/10.1109/NETSOFT.2015.7116128 |
S06 | de Oliveira Jr., F. A., & Ledoux, T. (2011). Self-management of Applications QoS for Energy Optimization in Datacenters. In Green Computing Middleware on Proceedings of the 2Nd International Workshop (pp. 3:1–3:6). New York, NY, USA: ACM. doi:10.1145/2088996.2088999 |
S07 | Arumugam, K., & Sumathi, P. (2017). Secure and QoS guaranteed selection resource for storing health care information of cloud users. In 2017 International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1165–1170). https://doi.org/10.1109/ICCMC.2017.8282657 |
S08 | Bao, D., Xiao, Z., Sun, Y., & Zhao, J. (2010). A method and framework for quality of cloud services measurement. In 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE) (Vol. 5, pp. V5–358–V5–362). http://doi.org/10.1109/ICACTE.2010.5579535 |
S09 | Baranwal, G., & Vidyarthi, D. P. (2014). A framework for selection of best cloud service provider using ranked voting method. In Advance Computing Conference (IACC), 2014 IEEE International (pp. 831–837). http://doi.org/10.1109/IAdCC.2014.6779430 |
S10 | Baranwal, G., & Vidyarthi, D. P. (2016). A cloud service selection model using improved ranked voting method. Concurrency and Computation: Practice and Experience, 28(13), 3540–3567. https://doi.org/10.1002/cpe.3740 |
S11 | Barba-Jimenez, C., Ramirez-Velarde, R., Tchernykh, A., Rodríguez-Dagnino, R., Nolazco-Flores, J., & Perez-Cazares, R. (2016). Cloud based Video-on-Demand service model ensuring quality of service and scalability. Journal of Network and Computer Applications, 70, 102–113. https://doi.org/10.1016/j.jnca.2016.05.007 |
S12 | Bardhan, S., & Milojicic, D. (2012). A Mechanism to Measure Quality-of-service in a Federated Cloud Environment. In Proceedings of the 2012 Workshop on Cloud Services, Federation, and the 8th Open Cirrus Summit (pp. 19–24). New York, NY, USA: ACM. doi:10.1145/2378975.2378981 |
S13 | Bousselmi, K., Brahmi, Z., & Gammoudi, M. M. (2016). QoS-Aware Scheduling of Workflows in Cloud Computing Environments. In 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA) (pp. 737–745). http://doi.org/10.1109/AINA.2016.72 |
S14 | Bruneo, D. (2014). A Stochastic Model to Investigate Data Center Performance and QoS in IaaS Cloud Computing Systems. IEEE Transactions on Parallel and Distributed Systems, 25(3), 560–569. http://doi.org/10.1109/TPDS.2013.67 |
S15 | Cedillo, P., Jimenez-Gomez, J., Abrahao, S., & Insfran, E. (2015). Towards a Monitoring Middleware for Cloud Services. In Services Computing (SCC), 2015 IEEE International Conference on (pp. 451–458). http://doi.org/10.1109/SCC.2015.68 |
S16 | Cervino, J., Rodriguez, P., Trajkovska, I., Mozo, A., & Salvachua, J. (2011). Testing a Cloud Provider Network for Hybrid P2P and Cloud Streaming Architectures. In Cloud Computing (CLOUD), 2011 IEEE International Conference on (pp. 356–363). http://doi.org/10.1109/CLOUD.2011.52 |
S17 | Costa, C. M., Leite, C. R. M., & Sousa, A. L. (2015). Service Response Time Measurement Model of Service Level Agreements in Cloud Environment. In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity) (pp. 969–974). http://doi.org/10.1109/SmartCity.2015.196 |
S18 | de Assunção, M. D., Cardonha, C. H., Netto, M. A. S., & Cunha, R. L. F. (2016). Impact of user patience on auto-scaling resource capacity for cloud services. Future Generation Computer Systems, 55, 41–50. http://doi.org/http://dx.doi.org/10.1016/j.future.2015.09.001 |
S19 | Dou, W., Xu, X., Meng, S., & Yu, S. (2015). An Energy-Aware QoS Enhanced Method for Service Computing across Clouds and Data Centers. In 2015 Third International Conference on Advanced Cloud and Big Data (pp. 80–87). http://doi.org/10.1109/CBD.2015.23 |
S20 | Duggan, J., Cetintemel, U., Papaemmanouil, O., & Upfal, E. (2011). Performance Prediction for Concurrent Database Workloads. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (pp. 337–348). New York, NY, USA: ACM. doi:10.1145/1989323.1989359 |
S21 | Ezenwoke, A., Daramola, O., & Adigun, M. (2018). QoS-based ranking and selection of SaaS applications using heterogeneous similarity metrics. Journal of Cloud Computing, 7(1), 15. https://doi.org/10.1186/s13677-018-0117-4 |
S22 | Faragardi, H. R., Shojaee, R., Tabani, H., & Rajabi, A. (2013). An analytical model to evaluate reliability of cloud computing systems in the presence of QoS requirements. In Computer and Information Science (ICIS), 2013 IEEE/ACIS 12th International Conference on (pp. 315–321). http://doi.org/10.1109/ICIS.2013.6607860 |
S23 | Garcia-Pineda, M., Segura-Garcia, J., & Felici-Castell, S. (2018). Estimation techniques to measure subjective quality on live video streaming in Cloud Mobile Media services. Computer Communications, 118, 27–39. https://doi.org/10.1016/j.comcom.2017.08.009 |
S24 | Garg, S. K., Versteeg, S., & Buyya, R. (2013). A framework for ranking of cloud computing services. Future Generation Computer Systems, 29(4), 1012–1023. http://doi.org/http://dx.doi.org/10.1016/j.future.2012.06.006 |
S25 | Ghafari, S. M., Fazeli, M., Patooghy, A., & Rikhtechi, L. (2013). Bee-MMT: A load balancing method for power consumption management in cloud computing. In Contemporary Computing (IC3), 2013 Sixth International Conference on (pp. 76–80). http://doi.org/10.1109/IC3.2013.6612165 |
S26 | Ghahramani, M. H., Zhou, M., & Hon, C. T. (2017). Toward cloud computing QoS architecture: analysis of cloud systems and cloud services. IEEE/CAA Journal of Automatica Sinica, 4(1), 6–18. https://doi.org/10.1109/JAS.2017.7510313 |
S27 | Gholami, A., & Arani, M. G. (2015). A trust model for resource selection in cloud computing environment. In 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI) (pp. 144–151). http://doi.org/10.1109/KBEI.2015.7436036 |
S28 | Ghosh, R., Longo, F., Naik, V. K., & Trivedi, K. S. (2010). Quantifying Resiliency of IaaS Cloud. In Reliable Distributed Systems, 2010 29th IEEE Symposium on (pp. 343–347). http://doi.org/10.1109/SRDS.2010.49 |
S29 | Gonzales, D., Kaplan, J. M., Saltzman, E., Winkelman, Z., & Woods, D. (2017). Cloud-Trust—a Security Assessment Model for Infrastructure as a Service (IaaS) Clouds. IEEE Transactions on Cloud Computing, 5(3), 523–536. https://doi.org/10.1109/TCC.2015.2415794 |
S30 | Guérout, T., Medjiah, S., Costa, G. Da, & Monteil, T. (2014). Quality of service modeling for green scheduling in Clouds. Sustainable Computing: Informatics and Systems, 4(4), 225–240. http://doi.org/http://dx.doi.org/10.1016/j.suscom.2014.08.006 |
S31 | Hasan, M. S., Alvares, F., Ledoux, T., & Pazat, J. (2017). Investigating Energy Consumption and Performance Trade-Off for Interactive Cloud Application. IEEE Transactions on Sustainable Computing, 2(2), 113–126. https://doi.org/10.1109/TSUSC.2017.2714959 |
S32 | Hassam, M., Kara, N., Belqasmi, F., & Glitho, R. (2014). Virtualized Infrastructure for Video Game Applications in Cloud Environments. In Proceedings of the 12th ACM International Symposium on Mobility Management and Wireless Access (pp. 109–114). New York, NY, USA: ACM. doi:10.1145/2642668.2642679 |
S33 | Hecht, G., Jose-Scheidt, B., Figueiredo, C. D., Moha, N., & Khomh, F. (2014). An Empirical Study of the Impact of Cloud Patterns on Quality of Service (QoS). In Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th International Conference on (pp. 278–283). http://doi.org/10.1109/CloudCom.2014.141 |
S34 | Heidari, P., Boucheneb, H., & Shami, A. (2015). A Formal Approach for QoS Assurance in the Cloud. In 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 629–634). http://doi.org/10.1109/CloudCom.2015.36 |
S35 | Hu, Y., Deng, B., Yang, Y., & Wang, D. (2017). Elasticity evaluation of IaaS cloud based on mixed workloads. In Proceedings - 15th International Symposium on Parallel and Distributed Computing, ISPDC 2016 (pp. 157–164). Beijing Institute of System Engineering, Beijing, China. https://doi.org/10.1109/ISPDC.2016.28 |
S36 | Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.-G., & Wu, Y. (2016). Cloud Performance Modeling with Benchmark Evaluation of Elastic Scaling Strategies. IEEE Transactions on Parallel and Distributed Systems, 27(1), 130–143. https://doi.org/10.1109/TPDS.2015.2398438 |
S37 | Ibrahim, A. A. Z. A., Wasim, M. U., Varrette, S., & Bouvry, P. (2018). PRESEnCE: Performance Metrics Models for Cloud SaaS Web Services. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD) (pp. 936–940). https://doi.org/10.1109/CLOUD.2018.00140 |
S38 | Joy, N., Chandrasekaran, K., & Binu, A. (2015). A study on energy efficient cloud computing. In 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (pp. 1–6). http://doi.org/10.1109/ICCIC.2015.7435661 |
S39 | Kaaniche, N., Mohamed, M., Laurent, M., & Ludwig, H. (2017). Security SLA Based Monitoring in Clouds. In 2017 IEEE International Conference on Edge Computing (EDGE) (pp. 90–97). https://doi.org/10.1109/IEEE.EDGE.2017.20 |
S40 | Karim, R., Ding, C., & Miri, A. (2015). End-to-End Performance Prediction for Selecting Cloud Services Solutions. In Service-Oriented System Engineering (SOSE), 2015 IEEE Symposium on (pp. 69–77). http://doi.org/10.1109/SOSE.2015.11 |
S41 | Katsaros, G., Subirats, J., Fitó, J. O., Guitart, J., Gilet, P., & Espling, D. (2013). A service framework for energy-aware monitoring and VM management in Clouds. Future Generation Computer Systems, 29(8), 2077–2091. http://doi.org/http://dx.doi.org/10.1016/j.future.2012.12.006 |
S42 | Kaur, P. D., & Chana, I. (2014). A resource elasticity framework for QoS-aware execution of cloud applications. Future Generation Computer Systems, 37, 14–25. http://doi.org/http://dx.doi.org/10.1016/j.future.2014.02.018 |
S43 | Kirsal, Y., Ever, Y. K., Mostarda, L., & Gemikonakli, O. (2015). Analytical Modelling and Performability Analysis for Cloud Computing Using Queuing System. In 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC) (pp. 643–647). http://doi.org/10.1109/UCC.2015.115 |
S44 | Lee, J. Y., Lee, J. W., Cheun, D. W., & Kim, S. D. (2009). A Quality Model for Evaluating Software-as-a-Service in Cloud Computing. In Software Engineering Research, Management and Applications, 2009. SERA ’09. 7th ACIS International Conference on (pp. 261–266). http://doi.org/10.1109/SERA.2009.43 |
S45 | Lim, E., & Thiran, P. (2014). Communication of Technical QoS among Cloud Brokers. In Cloud Engineering (IC2E), 2014 IEEE International Conference on (pp. 403–409). http://doi.org/10.1109/IC2E.2014.92 |
S46 | Lin, Y.-K., & Chang, P.-C. (2011). Maintenance reliability estimation for a cloud computing network with nodes failure. Expert Systems with Applications, 38(11), 14185–14189. http://doi.org/http://dx.doi.org/10.1016/j.eswa.2011.04.230 |
S47 | Liu, M., Dou, W., Yu, S., & Zhang, Z. (2014). A clusterized firewall framework for cloud computing. In 2014 IEEE International Conference on Communications (ICC) (pp. 3788–3793). http://doi.org/10.1109/ICC.2014.6883911 |
S48 | Liu, X., Xia, C., Wang, T., & Zhong, L. (2017). CloudSec: A Novel Approach to Verifying Security Conformance at the Bottom of the Cloud. In 2017 IEEE International Congress on Big Data (BigData Congress) (pp. 569–576). https://doi.org/10.1109/BigDataCongress.2017.87 |
S49 | Lu, L., & Yuan, Y. (2018). A novel TOPSIS evaluation scheme for cloud service trustworthiness combining objective and subjective aspects. Journal of Systems and Software, 143, 71–86. https://doi.org/10.1016/j.jss.2018.05.004 |
S50 | Manuel, P. (2015). A trust model of cloud computing based on Quality of Service. Annals of Operations Research, 233(1), 281–292. http://doi.org/10.1007/s10479-013-1380-x |
S51 | Mastelic, T., Brandic, I., & Jaarevic, J. (2014). CPU Performance Coefficient (CPU-PC): A Novel Performance Metric Based on Real-Time CPU Resource Provisioning in Time-Shared Cloud Environments. In Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th International Conference on (pp. 408–415). http://doi.org/10.1109/CloudCom.2014.13 |
S52 | Mesbahi, M. R., Rahmani, A. M., & Hosseinzadeh, M. (2018). Reliability and high availability in cloud computing environments: a reference roadmap. Human-Centric Computing and Information Sciences, 8(1), 20. https://doi.org/10.1186/s13673-018-0143-8 |
S53 | Nadanam, P., & Rajmohan, R. (2012). QoS evaluation for web services in cloud computing. In Computing Communication Networking Technologies (ICCCNT), 2012 Third International Conference on (pp. 1–8). http://doi.org/10.1109/ICCCNT.2012.6395991 |
S54 | Pedersen, J. M., Riaz, M. T., Junior, J. C., Dubalski, B., Ledzinski, D., & Patel, A. (2011). Assessing Measurements of QoS for Global Cloud Computing Services. In Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International Conference on (pp. 682–689). http://doi.org/10.1109/DASC.2011.120 |
S55 | Preuveneers, D., Heyman, T., Berbers, Y., & Joosen, W. (2016). Systematic scalability assessment for feature oriented multi-tenant services. Journal of Systems and Software, 116, 162–176. https://doi.org/10.1016/j.jss.2015.12.024 |
S56 | Qian, S., Cao, J., Le Mouël, F., Li, M., & Wang, J. (2015). Towards Prioritized Event Matching in a Content-based Publish/Subscribe System. In Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems (pp. 116–127). New York, NY, USA: ACM. doi:10.1145/2675743.2771823 |
S57 | Ran, Y., Shi, Y., Yang, E., Chen, S., & Yang, J. (2014). Dynamic resource allocation for video transcoding with QoS guaranteeing in cloud-based DASH system. In 2014 IEEE Globecom Workshops (GC Wkshps) (pp. 144–149). http://doi.org/10.1109/GLOCOMW.2014.7063421 |
S58 | Ravindhren, V. G., & Ravimaran, S. (2017). CCMA—cloud critical metric assessment framework for scientific computing. Cluster Computing. https://doi.org/10.1007/s10586-017-1384-4 |
S59 | Ravindran, K. (2013). Self-Assessment and Reconfiguration Methods for Autonomous Cloud-based Network Systems. In Distributed Simulation and Real Time Applications (DS-RT), 2013 IEEE/ACM 17th International Symposium on (pp. 87–94). http://doi.org/10.1109/DS-RT.2013.37 |
S60 | Rizvi, S., Ryoo, J., Kissell, J., & Aiken, B. (2015). A Stakeholder-oriented Assessment Index for Cloud Security Auditing. In Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication (pp. 55:1–55:7). New York, NY, USA: ACM. doi:10.1145/2701126.2701226 |
S61 | Rizvi, S., Roddy, H., Gualdoni, J., & Myzyri, I. (2017). Three-Step Approach to QoS Maintenance in Cloud Computing Using a Third-Party Auditor. Procedia Computer Science, 114, 83–92. https://doi.org/10.1016/j.procs.2017.09.014 |
S62 | Roohitavaf, M., Entezari-Maleki, R., & Movaghar, A. (2013). Availability Modeling and Evaluation of Cloud Virtual Data Centers. In Parallel and Distributed Systems (ICPADS), 2013 International Conference on (pp. 675–680). http://doi.org/10.1109/ICPADS.2013.120 |
S63 | Saiz, E., Ibarrola, E., Cristobo, L., & Taboada, I. (2014). A cloud platform for QoE evaluation: QoXcloud. In ITU Kaleidoscope Academic Conference: Living in a converged world - Impossible without standards?, Proceedings of the 2014 (pp. 241–247). http://doi.org/10.1109/Kaleidoscope.2014.6858471 |
S64 | Samet, N., Letaïfa, A. Ben, Hamdi, M., & Tabbane, S. (2016). Real-Time User Experience Evaluation for Cloud-Based Mobile Video. In 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 204–208). http://doi.org/10.1109/WAINA.2016.120 |
S65 | Singh, S., & Chana, I. (2015). Q-aware: Quality of service based cloud resource provisioning. Computers & Electrical Engineering, 47, 138–160. http://doi.org/http://dx.doi.org/10.1016/j.compeleceng.2015.02.003 |
S66 | Slivar, I., Skorin-Kapov, L., & Suznjevic, M. (2016). Cloud Gaming QoE Models for Deriving Video Encoding Adaptation Strategies. In Proceedings of the 7th International Conference on Multimedia Systems (pp. 18:1–18:12). New York, NY, USA: ACM. doi:10.1145/2910017.2910602 |
S67 | Son, S., & Sim, K. M. (2015). Adaptive and similarity-based tradeoff algorithms in a price-timeslot-QoS negotiation system to establish cloud SLAs. Information Systems Frontiers, 17(3), 565–589. http://doi.org/10.1007/s10796-013-9432-y |
S68 | Sousa, F. R. C., & Machado, J. C. (2012). Towards Elastic Multi-Tenant Database Replication with Quality of Service. In Utility and Cloud Computing (UCC), 2012 IEEE Fifth International Conference on (pp. 168–175). http://doi.org/10.1109/UCC.2012.36 |
S69 | Souza, R. H. de, Flores, P. A., Dantas, M. A. R., & Siqueira, F. (2016). Architectural recovering model for Distributed Databases: A reliability, availability and serviceability approach. In 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 575–580). https://doi.org/10.1109/ISCC.2016.7543799 |
S70 | Taherizadeh, S., & Stankovski, V. (2017). Incremental Learning from Multi-level Monitoring Data and Its Application to Component Based Software Engineering. In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC) (Vol. 2, pp. 378–383). https://doi.org/10.1109/COMPSAC.2017.148 |
S71 | Vedam, V., & Vemulapati, J. (2012). Demystifying Cloud Benchmarking Paradigm - An in Depth View. In 2012 IEEE 36th Annual Computer Software and Applications Conference (pp. 416–421). http://doi.org/10.1109/COMPSAC.2012.61 |
S72 | Wagle, S. S., Guzek, M., Bouvry, P., & Bisdorff, R. (2015). An Evaluation Model for Selecting Cloud Services from Commercially Available Cloud Providers. In 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 107–114). http://doi.org/10.1109/CloudCom.2015.94 |
S73 | Wang, S., & Dey, S. (2012). Cloud Mobile Gaming: Modeling and Measuring User Experience in Mobile Wireless Networks. SIGMOBILE Mob. Comput. Commun. Rev., 16(1), 10–21. doi:10.1145/2331675.2331679 |
S74 | Wen, Z. Y., & Hsiao, H. F. (2014). QoE-driven performance analysis of cloud gaming services. In Multimedia Signal Processing (MMSP), 2014 IEEE 16th International Workshop on (pp. 1–6). http://doi.org/10.1109/MMSP.2014.6958835 |
S75 | Wu, X., Liu, G., & Xu, J. (2015). A QoS-constrained scheduling for access requests in cloud storage. In Industrial Electronics and Applications (ICIEA), 2015 IEEE 10th Conference on (pp. 155–160). http://doi.org/10.1109/ICIEA.2015.7334102 |
S76 | Xia, Y., Zhou, M., Luo, X., Zhu, Q., Li, J., & Huang, Y. (2015). Stochastic Modeling and Quality Evaluation of Infrastructure-as-a-Service Clouds. IEEE Transactions on Automation Science and Engineering, 12(1), 162–170. http://doi.org/10.1109/TASE.2013.2276477 |
S77 | Xiao, Y., Lin, C., Jiang, Y., Chu, X., & Shen, X. (2010). Reputation-Based QoS Provisioning in Cloud Computing via Dirichlet Multinomial Model. In Communications (ICC), 2010 IEEE International Conference on (pp. 1–5). http://doi.org/10.1109/ICC.2010.5502407 |
S78 | Xiong, K., & Chen, X. (2015). Ensuring Cloud Service Guarantees via Service Level Agreement (SLA)-Based Resource Allocation. In 2015 IEEE 35th International Conference on Distributed Computing Systems Workshops (pp. 35–41). http://doi.org/10.1109/ICDCSW.2015.18 |
S79 | Xu, H., Qiu, X., Sheng, Y., Luo, L., & Xiang, Y. (2018). A Qos-Driven Approach to the Cloud Service Addressing Attributes of Security. IEEE Access, 6, 34477–34487. https://doi.org/10.1109/ACCESS.2018.2849594 |
S80 | Yu, N., Gu, F., Guo, X., & He, Z. (2015). A Fine-grained Flow Control Model for Cloud-assisted Data Broadcasting. In Proceedings of the 18th Symposium on Communications {&} Networking (pp. 24–31). San Diego, CA, USA: Society for Computer Simulation International. Retrieved from http://dl.acm.org/citation.cfm?id=2872550.2872554 |
S81 | Zant, B. El, & Gagnaire, M. (2015). Towards a unified customer aware figure of merit for CSP selection. Journal of Cloud Computing, 4(1), 1–23. http://doi.org/10.1186/s13677-015-0049-1 |
S82 | Zheng, X., Martin, P., & Brohman, K. (2013). Cloud Service Negotiation: A Research Roadmap. In Services Computing (SCC), 2013 IEEE International Conference on (pp. 627–634). http://doi.org/10.1109/SCC.2013.93 |
S83 | Zheng, X., Martin, P., Brohman, K., & Xu, L. D. (2014). CLOUDQUAL: A Quality Model for Cloud Services. IEEE Transactions on Industrial Informatics, 10(2), 1527–1536. http://doi.org/10.1109/TII.2014.2306329 |
S84 | Zhou, P., Wang, Z., Li, W., & Jiang, N. (2015). Quality Model of Cloud Service. In High Performance Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on (pp. 1418–1423). http://doi.org/10.1109/HPCC-CSS-ICESS.2015.134 |
S85 | Feng, J., & Kong, L. (2015). A Fuzzy Multi-objective Genetic Algorithm for QoS-based Cloud Service Composition. In 2015 11th International Conference on Semantics, Knowledge and Grids (SKG) (pp. 202–206). http://doi.org/10.1109/SKG.2015.23 |
S86 | Khan, H. M., Chan, G. Y., & Chua, F. F. (2016). An adaptive monitoring framework for ensuring accountability and quality of services in cloud computing. In 2016 International Conference on Information Networking (ICOIN) (pp. 249–253). http://doi.org/10.1109/ICOIN.2016.7427071 |
S87 | Khurana, R., & Bawa, R. K. (2016). QoS based Cloud Service Selection paradigms. In 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence) (pp. 174–179). https://doi.org/10.1109/CONFLUENCE.2016.7508109 |
S88 | Klymash, M., Beshley, M., Strykhalyuk, B., & Maksymyuk, T. (2014). Research and development the methods of quality of service provision in Mobile Cloud systems. In Communications and Networking (BlackSeaCom), 2014 IEEE International Black Sea Conference on (pp. 160–164). http://doi.org/10.1109/BlackSeaCom.2014.6849030 |
In order assess the quality of studies, we designed the following quality questions.
QUALITY QUESTIONS |
---|
Q1. (Motivation) Is the research problem clearly specified? |
Q2. (Aim)Are the research aim(s)/objective(s) clearly established? |
Q3. (Context) Is the context of the study clearly specified? |
Q4. (Data) Are the metrics for assessing the quality of cloud services clearly defined? |
Q5. (Data) Are the measurement functions for calculating the metrics clearly defined? |
Q6. (Design) Are the metric(s) empirically validated? |
Q7. (Usefulness) Is there enough evidence that shows how the metrics can be used in practice? |
Q8. (Contributions/results) Are the contributions/results of the paper discussed? |
Q9. (Insights) Are the insights/lessons learned of the study reported? |
Q10. (Limitations) Are the limitations of the study discussed? |
QUALITY ASSESSMENT
The primary studies' quality was scored based on how well they satisfied the ten quality questions. Be clear that we do not evaluate the quality of the paper itself with these criteria, but only its contributions’ alignment with our research questions. Then the scores less than five were removed (S85,S86, S87,S88).
Code | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Total
--- | ----- | ---------| ------- | --------- | -------- | ---------- | ------- | -------- | --------- | ------- S01 | Y | P | Y | Y | Y | P | Y | Y | N | N | 7 S02 | Y | P | Y | Y | Y | P | Y | Y | P | P | 8 S03 | Y | P | Y | Y | Y | Y | Y | Y | N | P | 8 S04 | Y | Y | Y | Y | Y | P | Y | P | N | N | 7 S05 | P | P | P | Y | Y | P | N | Y | N | N | 5 S06 | Y | Y | N | P | P | P | Y | Y | N | Y | 6,5 S07 | Y | P | P | Y | Y | P | N | P | N | N | 5 S08 | P | P | Y | Y | Y | P | N | P | N | N | 5 S09 | P | Y | Y | Y | Y | N | P | N | N | N | 5 S10 | P | Y | Y | Y | Y | N | Y | Y | N | N | 6,5 S11 | P | Y | Y | Y | Y | P | Y | Y | N | N | 7 S12 | Y | Y | Y | Y | Y | P | Y | Y | P | N | 8 S13 | Y | Y | P | Y | Y | P | Y | Y | N | N | 7 S14 | Y | Y | P | Y | Y | P | N | Y | P | N | 6,5 S15 | Y | Y | Y | Y | Y | N | Y | P | P | N | 7 S16 | Y | Y | Y | Y | Y | N | Y | Y | P | N | 7,5 S17 | P | P | P | Y | Y | P | Y | P | N | N | 5,5 S18 | Y | Y | P | Y | Y | P | P | Y | P | N | 7 S19 | P | Y | Y | Y | Y | P | P | Y | P | N | 7 S20 | Y | Y | Y | Y | Y | P | Y | Y | N | Y | 8,5 S21 | Y | N | Y | Y | Y | P | N | Y | P | N | 6 S22 | Y | Y | Y | P | P | N | P | P | P | Y | 6,5 S23 | P | P | Y | Y | Y | Y | N | Y | N | N | 6 S24 | Y | Y | Y | Y | Y | N | Y | Y | P | P | 8 S25 | P | P | Y | Y | Y | P | N | Y | N | N | 5,5 S26 | Y | P | Y | Y | Y | N | N | Y | Y | N | 6,5 S27 | Y | P | Y | Y | Y | P | N | Y | P | N | 6,5 S28 | Y | P | Y | Y | Y | P | N | P | N | N | 5,5 S29 | Y | Y | Y | P | P | P | P | Y | Y | Y | 8 S30 | Y | P | Y | Y | Y | P | P | Y | Y | N | 7,5 S31 | P | P | Y | Y | Y | P | N | Y | N | Y | 6,5 S32 | P | P | Y | Y | Y | N | N | Y | N | N | 5 S33 | P | P | Y | P | P | Y | N | Y | P | N | 5,5 S34 | P | Y | Y | Y | Y | N | N | P | P | N | 5,5 S35 | P | P | Y | Y | Y | P | N | Y | N | N | 5,5 S36 | Y | P | Y | Y | Y | Y | Y | Y | Y | N | 8,5 S37 | P | P | Y | Y | Y | P | N | Y | P | N | 6 S38 | Y | N | Y | Y | Y | N | N | Y | N | N | 5 S39 | Y | N | Y | P | P | P | P | Y | N | N | 5 S40 | Y | P | Y | Y | Y | N | N | Y | N | N | 5,5 S41 | Y | P | Y | Y | Y | P | N | Y | N | N | 6 S42 | Y | P | Y | Y | Y | N | P | Y | N | N | 6 S43 | P | P | Y | P | P | P | P | Y | N | N | 5 S44 | Y | P | Y | Y | Y | N | P | Y | N | N | 6 S45 | P | P | Y | Y | Y | N | N | Y | N | N | 5 S46 | Y | N | Y | Y | Y | P | P | P | N | N | 5,5 S47 | Y | N | Y | Y | Y | P | P | Y | N | N | 6 S48 | Y | Y | Y | Y | Y | P | N | P | N | N | 6 S49 | Y | Y | Y | Y | Y | Y | N | P | N | N | 6,5 S50 | P | Y | Y | Y | Y | N | P | N | N | N | 5 S51 | Y | N | Y | Y | Y | P | P | Y | N | N | 6 S52 | Y | P | Y | Y | Y | N | N | Y | Y | P | 7 S53 | Y | N | Y | Y | Y | N | N | Y | N | N | 5 S54 | P | P | Y | Y | Y | N | N | Y | P | N | 5,5 S55 | Y | P | Y | P | P | P | Y | Y | Y | N | 7 S56 | Y | N | Y | Y | Y | P | N | Y | Y | P | 7 S57 | Y | N | Y | Y | Y | N | N | Y | N | N | 5 S58 | P | N | Y | Y | Y | P | N | Y | P | N | 5,5 S59 | Y | Y | Y | P | P | N | P | Y | N | N | 5,5 S60 | Y | N | Y | Y | Y | P | N | Y | N | N | 5,5 S61 | Y | P | Y | Y | Y | N | N | P | N | N | 5 S62 | Y | N | Y | Y | Y | N | N | Y | N | P | 5,5 S63 | Y | Y | Y | P | P | N | N | Y | N | N | 5 S64 | Y | P | Y | Y | Y | N | N | P | N | N | 5 S65 | P | N | Y | Y | Y | P | Y | Y | Y | N | 7 S66 | P | N | Y | Y | Y | P | N | Y | P | P | 6 S67 | P | Y | Y | P | P | N | N | Y | Y | N | 5,5 S68 | Y | N | Y | Y | Y | N | N | Y | P | N | 5,5 S69 | P | Y | P | Y | Y | N | P | P | N | N | 5 S70 | P | Y | P | Y | Y | P | N | P | N | N | 5 S71 | N | N | Y | Y | Y | N | P | P | Y | N | 5 S72 | P | Y | Y | Y | Y | N | N | Y | Y | N | 6,5 S73 | P | N | Y | Y | Y | P | Y | Y | Y | N | 7 S74 | P | N | Y | Y | Y | P | N | Y | P | N | 5,5 S75 | Y | N | Y | Y | Y | N | N | Y | P | N | 5,5 S76 | Y | N | Y | Y | Y | N | N | Y | Y | Y | 7 S77 | P | P | P | Y | Y | N | P | Y | N | N | 5 S78 | Y | P | Y | Y | Y | P | N | P | N | N | 5,5 S79 | Y | Y | Y | Y | Y | P | N | Y | Y | N | 7,5 S80 | Y | Y | Y | Y | Y | P | N | P | N | N | 6 S81 | Y | Y | Y | Y | Y | P | N | Y | N | N | 6,5 S82 | Y | Y | Y | Y | Y | N | N | Y | P | N | 6,5 S83 | P | Y | Y | Y | Y | Y | Y | Y | N | Y | 8,5 S84 | N | Y | Y | Y | Y | P | N | Y | N | N | 5,5 S85 | P | P | P | Y | Y | N | N | P | N | N | 4 S86 | P | N | Y | P | P | N | P | P | N | N | 3,5 S87 | P | N | P | Y | P | N | N | P | N | N | 3 S88 | P | P | Y | Y | Y | N | N | P | N | N | 4,5
Y: Fully compliance, P: Partially comply, N: Do not comply
RELEVANCE OF PRIMARY STUDIES
In order to know the impact and influence of the papers. We used two criteria:
• The relevance of the journal or conference where the paper was published (CORE-ERA ranking for conference papers and the impact factor in Journal Citations Reports(JCR) for journal papers).
• The number of citations of the paper, collected from Google Scholar .
Code | Type conference /journal | Relevant publication | Citations | Year | Rate Citation Value | Library |
---|---|---|---|---|---|---|
S01 | J | 10 | 12 | 2017 | 10 | ScienceDirect |
S02 | C | 5 | 5 | 2014 | 0 | IEEE Xplore |
S03 | C | 0 | 3 | 2017 | 10 | IEEE Xplore |
S04 | C | 5 | 5 | 2016 | 0 | IEEE Xplore |
S05 | C | 0 | 16 | 2015 | 5 | IEEE Xplore |
S06 | C | 0 | 5 | 2011 | 0 | ACM |
S07 | C | 0 | 0 | 2017 | 5 | IEEE Xplore |
S08 | C | 0 | 11 | 2010 | 5 | IEEE Xplore |
S09 | C | 0 | 40 | 2014 | 5 | IEEE Xplore |
S10 | J | 10 | 21 | 2016 | 5 | ACM |
S11 | J | 10 | 17 | 2016 | 5 | ScienceDirect |
S12 | C | 0 | 12 | 2012 | 5 | ACM |
S13 | C | 5 | 11 | 2016 | 5 | IEEE Xplore |
S14 | J | 10 | 160 | 2014 | 10 | IEEE Xplore |
S15 | C | 10 | 12 | 2015 | 5 | IEEE Xplore |
S16 | C | 5 | 30 | 2011 | 5 | IEEE Xplore |
S17 | C | 0 | 2 | 2015 | 0 | IEEE Xplore |
S18 | J | 10 | 24 | 2013 | 5 | ScienceDirect |
S19 | C | 0 | 1 | 2015 | 0 | IEEE Xplore |
S20 | C | 10 | 134 | 2011 | 10 | ACM |
S21 | J | 0 | 4 | 2018 | 10 | ACM |
S22 | C | 5 | 20 | 2013 | 5 | IEEE Xplore |
S23 | J | 10 | 1 | 2018 | 10 | ACM |
S24 | J | 10 | 702 | 2013 | 10 | ScienceDirect |
S25 | C | 0 | 39 | 2013 | 5 | IEEE Xplore |
S26 | J | 0 | 63 | 2017 | 10 | IEEE Xplore |
S27 | C | 0 | 3 | 2015 | 0 | IEEE Xplore |
S28 | C | 10 | 53 | 2010 | 10 | IEEE Xplore |
S29 | J | 10 | 70 | 2017 | 10 | IEEE Xplore |
S30 | J | 10 | 24 | 2014 | 5 | ScienceDirect |
S31 | J | 0 | 7 | 2017 | 10 | IEEE Xplore |
S32 | C | 5 | 3 | 2014 | 0 | ACM |
S33 | C | 5 | 8 | 2014 | 0 | IEEE Xplore |
S34 | C | 5 | 0 | 2015 | 0 | IEEE Xplore |
S35 | C | 0 | 2 | 2017 | 10 | IEEE Xplore |
S36 | C | 0 | 83 | 2016 | 10 | IEEE Xplore |
S37 | C | 5 | 0 | 2018 | 5 | IEEE Xplore |
S38 | C | 0 | 1 | 2015 | 0 | IEEE Xplore |
S39 | C | 0 | 7 | 2017 | 10 | IEEE Xplore |
S40 | C | 0 | 7 | 2015 | 0 | IEEE Xplore |
S41 | J | 10 | 50 | 2013 | 10 | ScienceDirect |
S42 | J | 10 | 56 | 2014 | 10 | ScienceDirect |
S43 | C | 0 | 3 | 2015 | 0 | IEEE Xplore |
S44 | C | 5 | 138 | 2009 | 10 | IEEE Xplore |
S45 | C | 0 | 4 | 2014 | 0 | IEEE Xplore |
S46 | J | 0 | 47 | 2011 | 5 | ScienceDirect |
S47 | C | 5 | 10 | 2014 | 5 | IEEE Xplore |
S48 | C | 0 | 0 | 2017 | 5 | IEEE Xplore |
S49 | J | 10 | 3 | 2018 | 10 | ScienceDirect |
S50 | J | 0 | 122 | 2015 | 10 | SpringerLink |
S51 | C | 5 | 3 | 2014 | 0 | IEEE Xplore |
S52 | J | 10 | 10 | 2018 | 10 | SpringerLink |
S53 | C | 0 | 21 | 2012 | 5 | IEEE Xplore |
S54 | C | 5 | 26 | 2011 | 5 | IEEE Xplore |
S55 | J | 10 | 6 | 2016 | 0 | ACM |
S56 | C | 0 | 1 | 2015 | 0 | ACM |
S57 | C | 0 | 5 | 2014 | 0 | IEEE Xplore |
S58 | J | 10 | 2 | 2017 | 10 | SpringerLink |
S59 | C | 5 | 2 | 2013 | 0 | IEEE Xplore |
S60 | C | 0 | 6 | 2015 | 0 | ACM |
S61 | J | 0 | 3 | 2017 | 10 | ACM |
S62 | C | 5 | 5 | 2013 | 0 | IEEE Xplore |
S63 | C | 0 | 3 | 2014 | 0 | IEEE Xplore |
S64 | C | 0 | 3 | 2016 | 0 | IEEE Xplore |
S65 | J | 10 | 67 | 2015 | 10 | ScienceDirect |
S66 | C | 0 | 21 | 2016 | 5 | ACM |
S67 | J | 10 | 18 | 2015 | 5 | SpringerLink |
S68 | C | 0 | 33 | 2012 | 5 | IEEE Xplore |
S69 | C | 5 | 2 | 2016 | 0 | IEEE Xplore |
S70 | C | 5 | 3 | 2017 | 10 | IEEE Xplore |
S71 | C | 5 | 10 | 2012 | 5 | IEEE Xplore |
S72 | C | 5 | 24 | 2015 | 5 | IEEE Xplore |
S73 | J | 0 | 57 | 2012 | 10 | ACM |
S74 | C | 5 | 12 | 2014 | 5 | IEEE Xplore |
S75 | C | 0 | 6 | 2015 | 0 | IEEE Xplore |
S76 | J | 10 | 62 | 2015 | 10 | IEEE Xplore |
S77 | C | 5 | 52 | 2010 | 10 | IEEE Xplore |
S78 | C | 0 | 12 | 2015 | 5 | IEEE Xplore |
S79 | J | 10 | 1 | 2018 | 10 | IEEE Xplore |
S80 | C | 0 | 0 | 2015 | 0 | ACM |
S81 | J | 0 | 4 | 2015 | 0 | JoCCASA |
S82 | C | 10 | 14 | 2013 | 5 | IEEE Xplore |
S83 | J | 10 | 80 | 2014 | 10 | IEEE Xplore |
S84 | C | 5 | 4 | 2015 | 0 | IEEE Xplore |
S85 | C | 5 | 6 | 2015 | 0 | IEEE Xplore |
S86 | C | 5 | 8 | 2016 | 0 | IEEE Xplore |
S87 | C | 0 | 2 | 2016 | 0 | IEEE Xplore |
S88 | C | 0 | 24 | 2014 | 5 | IEEE Xplore |
J: Journal, C: Conference
CORE-ERA http://portal.core.edu.au
JCR https://www.recursoscientificos.fecyt.es/factor/
In this subsection, is shown the taxonomy of metrics for cloud services. The classification was done using the data extraction criteria.
1. Taxonomy of quality metrics metamodel
2. Taxonomy of quality metrics for cloud services summary
3. Taxonomy of quality metrics for cloud services
NOTE: In order to visualize the reports, please enable de Power Pivot and Power View complements of Excel.
How to enable Excel complements
Having trouble with Pages or any questions or suggestions? Please, contact us by email