动态更新工作中实现或者阅读过的计算广告相关论文、学习资料和业界分享,作为自己工作的总结,也希望能为计算广告相关行业的同学带来便利。 所有资料均来自于互联网,如有侵权,请联系王喆。同时欢迎对计算广告感兴趣的同学与我讨论相关问题,我的联系方式如下:
- Email: [email protected]
- LinkedIn: 王喆的LinkedIn
- 知乎私信: 王喆的知乎
会不断加入一些重要的计算广告相关论文和资料,并去掉一些过时的或者跟计算广告不太相关的论文
New!
[Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
2018 KDD best paper, Airbnb基于embeddding构建的实时搜索推荐系统New!
[DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
阿里提出的深度兴趣网络(Deep Interest Network)最新改进DIEN
其他相关资源
- 张伟楠的RTB Papers列表
- 基于Spark MLlib的CTR预估模型(LR, FM, RF, GBDT, NN, PNN)
- 推荐系统相关论文和资源列表
- Honglei Zhang的推荐系统论文列表
Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给出直观解释的文章
- Google Vizier A Service for Black-Box Optimization
- 在线最优化求解(Online Optimization)-冯扬
- Hogwild A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
- Parallelized Stochastic Gradient Descent
- A Survey on Algorithms of the Regularized Convex Optimization Problem
- Follow-the-Regularized-Leader and Mirror Descent- Equivalence Theorems and L1 Regularization
- A Review of Bayesian Optimization
- Taking the Human Out of the Loop- A Review of Bayesian Optimization
- 非线性规划
话题模型相关文章,PLSA,LDA,进行广告Context特征提取,创意优化经常会用到Topic Model
- 概率语言模型及其变形系列
- Parameter estimation for text analysis
- LDA数学八卦
- Distributed Representations of Words and Phrases and their Compositionality
- Dirichlet Distribution, Dirichlet Process and Dirichlet Process Mixture(PPT)
- 理解共轭先验
Google三大篇,HDFS,MapReduce,BigTable,奠定大数据基础架构的三篇文章,任何从事大数据行业的工程师都应该了解
- MapReduce Simplified Data Processing on Large Clusters
- The Google File System
- Bigtable A Distributed Storage System for Structured Data
FM因子分解机模型的相关paper,在计算广告领域非常实用的模型
- FM PPT by CMU
- Factorization Machines Rendle2010
- libfm-1.42.manual
- Scaling Factorization Machines to Relational Data
- fastFM- A Library for Factorization Machines
- [Negative Sampling] Word2vec Explained Negative-Sampling Word-Embedding Method (2014)
- [SDNE] Structural Deep Network Embedding (THU 2016)
- [Item2Vec] Item2Vec-Neural Item Embedding for Collaborative Filtering (Microsoft 2016)
- [Word2Vec] Distributed Representations of Words and Phrases and their Compositionality (Google 2013)
- [Word2Vec] Word2vec Parameter Learning Explained (UMich 2016)
- [Node2vec] Node2vec - Scalable Feature Learning for Networks (Stanford 2016)
- [Graph Embedding] DeepWalk- Online Learning of Social Representations (SBU 2014)
- [Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
- [Alibaba Embedding] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (Alibaba 2018)
- [Word2Vec] Efficient Estimation of Word Representations in Vector Space (Google 2013)
- [LINE] LINE - Large-scale Information Network Embedding (MSRA 2015)
广告系统中Pacing,预算控制,以及怎么把预算控制与其他模块相结合的问题
- Budget Pacing for Targeted Online Advertisements at LinkedIn
- 广告系统中的智能预算控制策略
- Predicting Traffic of Online Advertising in Real-time Bidding Systems from Perspective of Demand-Side Platforms
- Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising
- PID控制经典培训教程
- PID控制原理与控制算法
- Smart Pacing for Effective Online Ad Campaign Optimization
树模型和基于树模型的boosting模型,树模型的效果在大部分问题上非常好,在CTR,CVR预估及特征工程方面的应用非常广
- Introduction to Boosted Trees
- Classification and Regression Trees
- Greedy Function Approximation A Gradient Boosting Machine
- Classification and Regression Trees
事实上,现在很多大的媒体主仍是合约广告系统,合约广告系统的在线分配,Yield Optimization,以及定价问题都是非常重要且有挑战性的问题
- A Dynamic Pricing Model for Unifying Programmatic Guarantee and Real-Time Bidding in Display Advertising
- Pricing Guaranteed Contracts in Online Display Advertising
- Risk-Aware Dynamic Reserve Prices of Programmatic Guarantee in Display Advertising
- Pricing Guidance in Ad Sale Negotiations The PrintAds Example
- Risk-Aware Revenue Maximization in Display Advertising
- [LR] Predicting Clicks - Estimating the Click-Through Rate for New Ads (Microsoft 2007)
- [FFM] Field-aware Factorization Machines for CTR Prediction (Criteo 2016)
- [GBDT+LR] Practical Lessons from Predicting Clicks on Ads at Facebook (Facebook 2014)
- [PS-PLM] Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction (Alibaba 2017)
- [FTRL] Ad Click Prediction a View from the Trenches (Google 2013)
- [FM] Fast Context-aware Recommendations with Factorization Machines (UKON 2011)
计算广告中广告定价,RTB过程中广告出价策略的相关问题
- Research Frontier of Real-Time Bidding based Display Advertising
- Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising
- Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising
- Real-Time Bidding by Reinforcement Learning in Display Advertising
- Combining Powers of Two Predictors in Optimizing Real-Time Bidding Strategy under Constrained Budget
- Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising
- Optimized Cost per Click in Taobao Display Advertising
- Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation
- Deep Reinforcement Learning for Sponsored Search Real-time Bidding
广告系统的架构问题
- [TensorFlow Whitepaper]TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems
- 大数据下的广告排序技术及实践
- 美团机器学习 吃喝玩乐中的算法问题
- [Parameter Server]Scaling Distributed Machine Learning with the Parameter Server
- Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting
- A Comparison of Distributed Machine Learning Platforms
- Efficient Query Evaluation using a Two-Level Retrieval Process
- [TensorFlow Whitepaper]TensorFlow- A System for Large-Scale Machine Learning
- [Parameter Server]Parameter Server for Distributed Machine Learning
- Overlapping Experiment Infrastructure More, Better, Faster Experimentation
机器学习方面一些非常实用的学习资料
- 各种回归的概念学习
- 机器学习总图
- Efficient Estimation of Word Representations in Vector Space
- Rules of Machine Learning- Best Practices for ML Engineering
- An introduction to ROC analysis
- Deep Learning Tutorial
- 广义线性模型
- 贝叶斯统计学(PPT)
- 关联规则基本算法及其应用
迁移学习相关文章,计算广告中经常遇到新广告冷启动的问题,利用迁移学习能较好解决该问题
- [Multi-Task]An Overview of Multi-Task Learning in Deep Neural Networks
- Scalable Hands-Free Transfer Learning for Online Advertising
- A Survey on Transfer Learning
- [DCN] Deep & Cross Network for Ad Click Predictions (Stanford 2017)
- [Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features (Microsoft 2016)
- [PNN] Product-based Neural Networks for User Response Prediction (SJTU 2016)
- [DIN] Deep Interest Network for Click-Through Rate Prediction (Alibaba 2018)
- [ESMM] Entire Space Multi-Task Model - An Effective Approach for Estimating Post-Click Conversion Rate (Alibaba 2018)
- [Wide & Deep] Wide & Deep Learning for Recommender Systems (Google 2016)
- [xDeepFM] xDeepFM - Combining Explicit and Implicit Feature Interactions for Recommender Systems (USTC 2018)
- [Image CTR] Image Matters - Visually modeling user behaviors using Advanced Model Server (Alibaba 2018)
- [AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks (ZJU 2017)
- [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
- [DSSM] Learning Deep Structured Semantic Models for Web Search using Clickthrough Data (UIUC 2013)
- [FNN] Deep Learning over Multi-field Categorical Data (UCL 2016)
- [DeepFM] A Factorization-Machine based Neural Network for CTR Prediction (HIT-Huawei 2017)
- [NFM] Neural Factorization Machines for Sparse Predictive Analytics (NUS 2017)
探索和利用,计算广告中非常经典,也是容易被大家忽视的问题,其实所有的广告系统都面临如何解决新广告主冷启动,以及在效果不好的情况下如何探索新的优质流量的问题,希望该目录下的几篇文章能够帮助到你
- An Empirical Evaluation of Thompson Sampling
- Dynamic Online Pricing with Incomplete Information Using Multi-Armed Bandit Experiments
- 广告系统中的探索与利用算法
- Finite-time Analysis of the Multiarmed Bandit Problem
- A Fast and Simple Algorithm for Contextual Bandits
- Customer Acquisition via Display Advertising Using MultiArmed Bandit Experiments
- Mastering the game of Go with deep neural networks and tree search
- Exploring compact reinforcement-learning representations with linear regression
- Incentivizting Exploration in Reinforcement Learning with Deep Predictive Models
- Bandit Algorithms Continued- UCB1
- A Contextual-Bandit Approach to Personalized News Article Recommendation(LinUCB)
- Exploitation and Exploration in a Performance based Contextual Advertising System
- Bandit based Monte-Carlo Planning
- Random Forest for the Contextual Bandit Problem
- Unifying Count-Based Exploration and Intrinsic Motivation
- Analysis of Thompson Sampling for the Multi-armed Bandit Problem
- Thompson Sampling PPT
- Hierarchical Deep Reinforcement Learning- Integrating Temporal Abstraction and Intrinsic Motivation
- Exploration and Exploitation Problem by Wang Zhe
- Exploration exploitation in Go UCT for Monte-Carlo Go
- 对抗搜索、多臂老虎机问题、UCB算法
- Using Confidence Bounds for Exploitation-Exploration Trade-offs
广告流量的分配问题