Skip to content

Commit

Permalink
Added week 10 material
Browse files Browse the repository at this point in the history
  • Loading branch information
wmutschl committed Jun 19, 2024
1 parent 5748370 commit 381d7f0
Show file tree
Hide file tree
Showing 6 changed files with 122 additions and 52 deletions.
20 changes: 10 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,7 @@ Please feel free to use this for teaching or learning purposes; however, taking


<details>
<summary>Week 9: First-order perturbation, Identification, Sensitivity</summary>
<summary>Week 9: First-order perturbation, Shock transmission channels</summary>

### Goals
* understand the concept of a policy function
Expand All @@ -215,36 +215,36 @@ Please feel free to use this for teaching or learning purposes; however, taking

</details>

<!---

<details>
<summary>Week 10: Log-Linearization; Practicing Stochastic Simulations, Impulse Response Functions, Perturbation. Environmental Policy, Trend Inflation in the New Keynesian model. OccBin, Introduction to Higher-Order Approximation</summary>
<summary>Week 10: Identification, Sensitivity, Log-Linearization, Trend Inflation in the New Keynesian model.</summary>

### Goals
*
* understand and get used to Dynare's *stoch_simul* command
* understand Dynare's sensitivity toolbox
* study the modeling approach and effects of different environmental policies in a New Keynesian model
* study the macroeconomics of trend inflation in a New Keynesian model

### To Do
* prepare [week 9's exercise sheet](https://github.com/wmutschl/Computational-Macroeconomics/releases/latest/download/week_9.pdf)
* [x] read the case-study papers on environmental policy and trend inflation carefully
* prepare [week 10's exercise sheet](https://github.com/wmutschl/Computational-Macroeconomics/releases/latest/download/week_10.pdf)
* [x] we will work through exercise 1 and 2 together in class, exercise 3 is for you to do on your own in class
* [x] read the case-study paper on trend inflation carefully
* [x] download all files
* [x] read all the exercises
* [x] try to prepare the replications
* [x] try to prepare the replication

</details>

<!---
<details>
<summary>Week 11: Recursive Preferences and Equity Risk Premium and Stochastic Volatility</summary>
<summary>Week 11: ; Practicing Stochastic Simulations, Impulse Response Functions, Perturbation. Environmental Policy,OccBin, Introduction to Higher-Order Approximation Recursive Preferences and Equity Risk Premium and Stochastic Volatility</summary>
### Goals
*
* study the modeling approach and effects of different environmental policies in a New Keynesian model
### To Do
* [ ]
* [x] read the case-study paper on environmental policy
</details>
Expand Down
18 changes: 9 additions & 9 deletions exercises/case_study_ascari_sbordone_2014.tex
Original file line number Diff line number Diff line change
Expand Up @@ -12,24 +12,24 @@
Explain what each file is doing.

\item Replicate figure 14 of the paper.
Set initially $\varphi = 1$, $\phi_\pi=2$, $\phi_y = 0.5/4$ and $\rho_i=0.8$.
Set initially \(\varphi = 1\), \(\phi_\pi=2\), \(\phi_y = 0.5/4\) and \(\rho_i=0.8\).

\item Replicate figure 13 of the paper.
Set initially $\varphi = 0$, $\phi_\pi=1.5$, $\phi_y = 0.5/4$ and $\rho_i=0$.
Set initially \(\varphi = 0\), \(\phi_\pi=1.5\), \(\phi_y = 0.5/4\) and \(\rho_i=0\).

\item Replicate the business cycle moments reported on page 717.
Set initially $\varphi = 1$, $\rho_a=0.95$, $\rho_i=0$ $\phi_\pi=1.5$, and $\phi_y = 0.5/4$.
Note that for the business cycle moments, the technology shock standard error is actually $0.45$.
Set initially \(\varphi = 1\), \(\rho_a=0.95\), \(\rho_i=0\) \(\phi_\pi=1.5\), and \(\phi_y = 0.5/4\).
Note that for the business cycle moments, the technology shock standard error is actually \(0.45\).

\item Replicate figure 7 of the paper.
Set initially $\varphi = 1$, $\phi_\pi=2$, $\phi_y = 0.5/4$ and $\rho_i=0.8$.
Set initially \(\varphi = 1\), \(\phi_\pi=2\), \(\phi_y = 0.5/4\) and \(\rho_i=0.8\).

\item Replicate figure 8 of the paper.
Set initially $\varphi = 1$, $\phi_\pi=2$, $\phi_y = 0.5/4$ and $\rho_i=0.8$.
Set initially \(\varphi = 1\), \(\phi_\pi=2\), \(\phi_y = 0.5/4\) and \(\rho_i=0.8\).

\item Replicate figure 11 of the paper.
Set initially $\varphi = 1$, $\phi_\pi=2$, $\phi_y = 0.5/4$ and $\rho_i=0.8$.
Note that as described in footnote 54, the determinacy region in Figure 11 is actually the "determinacy and stability region",
Set initially \(\varphi = 1\), \(\phi_\pi=2\), \(\phi_y = 0.5/4\) and \(\rho_i=0.8\).
Note that as described in footnote 54, the determinacy region in Figure 11 is actually the \enquote{determinacy and stability region},
i.e.\ it does not distinguish whether the Blanchard-Kahn conditions fail because of too many unstable roots (instability, info==3)
or because of too few unstable roots (indeterminacy, info==4).

Expand All @@ -50,7 +50,7 @@


\begin{solution}\textbf{Solution to \nameref{ex:CaseStudy.Ascari.Sbordone.2014}}
\ifDisplaySolutions
\ifDisplaySolutions%
\input{exercises/case_study_ascari_sbordone_2014_solution.tex}
\fi
\newpage
Expand Down
70 changes: 38 additions & 32 deletions exercises/log_linearization.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\section{Log-Linearization vs. first-order perturbation\label{ex:LogLinearization}}
\section{Log-Linearization vs first-order perturbation\label{ex:LogLinearization}}

\subsection*{Model variants}
Let us consider the small scale New Keynesian model from \textcite{An.Schorfheide_2007_BayesianAnalysisDSGE},
Expand All @@ -21,29 +21,32 @@ \subsection*{Model variants}
\bar{g} = 1/0.85.
\end{align*}

\paragraph{Model A: original nonlinear model}
\paragraph{Model A:\ original nonlinear model}
\begin{align}
1 &= \beta \mathbb{E}_t\left[\left(\frac{C_{t+1}/A_{t+1}}{C_t/A_t}\right)^{-\tau} \frac{A_t}{A_{t+1}} \frac{R_t}{\pi_{t+1}}\right]
1 &= \beta \mathbb{E}_t\left[{\left(\frac{C_{t+1}/A_{t+1}}{C_t/A_t}\right)}^{-\tau} \frac{A_t}{A_{t+1}} \frac{R_t}{\pi_{t+1}}\right]
\\
1 &= \phi \left(\pi_t - \pi\right) \left[\left(1-\frac{1}{2\nu}\right)\pi_t + \frac{\pi}{2\nu}\right] - \phi \beta \mathbb{E}_t \left[\left(\frac{C_{t+1}/A_{t+1}}{C_t/A_t}\right)^{-\tau} \frac{Y_{t+1}/A_{t+1}}{Y_t/A_t} \left(\pi_{t+1} - \pi \right) \pi_{t+1}\right] + \frac{1}{\nu}\left[1-\left({\frac{C_t}{A_t}}\right)^{\tau}\right]
1 &= \phi \left(\pi_t - \pi\right) \left[\left(1-\frac{1}{2\nu}\right)\pi_t + \frac{\pi}{2\nu}\right] \nonumber
\\&\qquad\qquad\qquad
- \phi \beta \mathbb{E}_t \left[{\left(\frac{C_{t+1}/A_{t+1}}{C_t/A_t}\right)}^{-\tau} \frac{Y_{t+1}/A_{t+1}}{Y_t/A_t} \left(\pi_{t+1} - \pi \right) \pi_{t+1}\right] + \frac{1}{\nu}\left[1-{\left({\frac{C_t}{A_t}}\right)}^{\tau}\right]
\\
Y_t &= C_t + G_t + \frac{\phi}{2} \left({\pi_t - \pi}\right)^2 Y_t
Y_t &= C_t + G_t + \frac{\phi}{2} {\left({\pi_t - \pi}\right)}^2 Y_t
\\
G_t &= \frac{g_t-1}{g_t} Y_t
\\
R_t &= {R_t^{*}}^{1-\rho_R} R_{t-1}^{\rho_R} e^{\epsilon_{R,t}}
\\
R_t^* & = R \left(\frac{\pi_t}{\bar{\pi}}\right)^{\psi_1} \left(\frac{Y_t}{Y_t^*}\right)^{\psi_2}
R_t^* & = R {\left(\frac{\pi_t}{\bar{\pi}}\right)}^{\psi_1} {\left(\frac{Y_t}{Y_t^*}\right)}^{\psi_2}
\\
\ln(A_t) &= \ln(\gamma) + \ln(A_{t-1}) + \ln(z_t)
\\
\ln(z_t) &= \rho_z \ln(z_{t-1}) + \epsilon_{z,t}
\\
\ln(g_t) &= (1-\rho_g)\ln(\bar{g}) + \rho_g \ln(g_{t-1}) + \epsilon_{g,t}
\\
Y_t^* &= (1-\nu)^{\frac{1}{\tau}} A_t g_t
Y_t^* &= {(1-\nu)}^{\frac{1}{\tau}} A_t g_t
\end{align}
The productivity shock $\varepsilon_{z,t}$, the government spending shock $\varepsilon_{g,t}$ and the monetary policy shock $\varepsilon_{R,t}$ are iid Gaussian:
The productivity shock \(\varepsilon_{z,t}\), the government spending shock \(\varepsilon_{g,t}\)
and the monetary policy shock \(\varepsilon_{R,t}\) are iid Gaussian:
\begin{align*}
\begin{pmatrix}
\varepsilon_{z,t}\\\varepsilon_{g,t}\\\varepsilon_{R,t}
Expand All @@ -59,24 +62,25 @@ \subsection*{Model variants}
\phi=\tau\frac{1-\nu}{\nu\bar{\pi}^2\kappa}
\end{align*}

\paragraph{Model B: stationary nonlinear model}
Let's denote: $c_t= C_t/A_t$, $y_t= Y_t/A_t$ and $y_t= Y_t/A_t$, then Model A can be equivalently represented as:
\paragraph{Model B:\ stationary nonlinear model}
Let's denote: \(c_t= C_t/A_t\), \(y_t= Y_t/A_t\) and \(y^*_t= Y^*_t/A_t\), then Model A can be equivalently represented as:
\begin{align}
1 &= \beta \mathbb{E}_t\left[\left(\frac{c_{t+1}}{c_t}\right)^{-\tau} \frac{1}{\gamma z_{t+1}} \frac{R_t}{\pi_{t+1}}\right] \label{eq:AS_B1}
1 &= \beta \mathbb{E}_t\left[{\left(\frac{c_{t+1}}{c_t}\right)}^{-\tau} \frac{1}{\gamma z_{t+1}} \frac{R_t}{\pi_{t+1}}\right] \label{eq:AS_B1}
\\
1 &= \phi \left(\pi_t - \pi\right) \left[\left(1-\frac{1}{2\nu}\right)\pi_t + \frac{\pi}{2\nu}\right] - \phi \beta \mathbb{E}_t \left[\left(\frac{c_{t+1}}{c_t}\right)^{-\tau} \frac{y_{t+1}}{y_t} \left(\pi_{t+1} - \pi \right) \pi_{t+1}\right] + \frac{1}{\nu}\left[1-c_t^{\tau}\right]
1 &= \phi \left(\pi_t - \pi\right) \left[\left(1-\frac{1}{2\nu}\right)\pi_t + \frac{\pi}{2\nu}\right]
- \phi \beta \mathbb{E}_t \left[{\left(\frac{c_{t+1}}{c_t}\right)}^{-\tau} \frac{y_{t+1}}{y_t} \left(\pi_{t+1} - \pi \right) \pi_{t+1}\right] + \frac{1}{\nu}\left[1-c_t^{\tau}\right]
\\
y_t &= c_t + \frac{g_t-1}{g_t} y_t + \frac{\phi}{2} \left({\pi_t - \pi}\right)^2 y_t
y_t &= c_t + \frac{g_t-1}{g_t} y_t + \frac{\phi}{2} {\left({\pi_t - \pi}\right)}^2 y_t
\\
R_t &= {R_t^{*}}^{1-\rho_R} R_{t-1}^{\rho_R} e^{\epsilon_{R,t}}
\\
R_t^* & = R \left(\frac{\pi_t}{\bar{\pi}}\right)^{\psi_1} \left(\frac{y_t}{y_t^*}\right)^{\psi_2}
R_t^* & = R {\left(\frac{\pi_t}{\bar{\pi}}\right)}^{\psi_1} {\left(\frac{y_t}{y_t^*}\right)}^{\psi_2}
\\
\ln(z_t) &= \rho_z \ln(z_{t-1}) + \epsilon_{z,t}
\\
\ln(g_t) &= (1-\rho_g)\ln(\bar{g}) + \rho_g \ln(g_{t-1}) + \epsilon_{g,t}
\\
y_t^* &= (1-\nu)^{\frac{1}{\tau}} g_t
y_t^* &= {(1-\nu)}^{\frac{1}{\tau}} g_t
\end{align}
with the following auxiliary parameters:
\begin{align*}
Expand All @@ -87,17 +91,19 @@ \subsection*{Model variants}
\end{align*}
The steady-state is given by:
\begin{align*}
z=1, \qquad\pi = \bar{\pi}, \qquad g=\bar{g}, \qquad R=\frac{\gamma}{\beta}\pi, \qquad R^* = R, \qquad c = (1-\nu)^{\frac{1}{\tau}}, \qquad y = gc , \qquad y^*=y
z=1, \qquad\pi = \bar{\pi}, \qquad g=\bar{g}, \qquad R=\frac{\gamma}{\beta}\pi, \qquad R^* = R, \qquad c = {(1-\nu)}^{\frac{1}{\tau}}, \qquad y = gc , \qquad y^*=y
\end{align*}

\paragraph{Model C: Exponential transform}
Let's denote hat variables as log deviations from steady-state: $\hat{x}_t = \ln\left(\frac{X_t}{X}\right)$, then Model B can be equivalently represented as:
\paragraph{Model C:\ Exponential transform}
Let's denote hat variables as log deviations from steady-state: \(\hat{x}_t = \ln\left(\frac{X_t}{X}\right)\), then Model B can be equivalently represented as:
\begin{align}
1 &= \mathbb{E}_t \left[e^{-\tau \hat{c}_{t+1} + \tau \hat{c}_{t} + \hat{R}_{t} - \hat{z}_{t+1} - \hat{\pi}_{t+1} }\right]\label{eq:AS_C1}
\\
0 &= \left(e^{\hat{\pi}_{t}}-1\right) \left[\left(1-\frac{1}{2\nu}\right)e^{\hat{\pi}_{t}} + \frac{1}{2\nu}\right] - \beta \mathbb{E}_t \left[\left(e^{\hat{\pi}_{t+1}}-1 \right) e^{-\tau \hat{c}_{t+1} + \tau \hat{c}_{t} + \hat{y}_{t+1} - \hat{y}_{t} + \hat{\pi}_{t+1}}\right] + \frac{1-\nu}{\nu\pi^2\phi}\left(1-e^{\tau\hat{c}_{t}}\right)
0 &= \left(e^{\hat{\pi}_{t}}-1\right) \left[\left(1-\frac{1}{2\nu}\right)e^{\hat{\pi}_{t}} + \frac{1}{2\nu}\right] \nonumber
\\&\qquad\qquad\qquad
- \beta \mathbb{E}_t \left[\left(e^{\hat{\pi}_{t+1}}-1 \right) e^{-\tau \hat{c}_{t+1} + \tau \hat{c}_{t} + \hat{y}_{t+1} - \hat{y}_{t} + \hat{\pi}_{t+1}}\right] + \frac{1-\nu}{\nu\pi^2\phi}\left(1-e^{\tau\hat{c}_{t}}\right)
\\
e^{\hat{c}_{t}-\hat{y}_{t}} &= e^{-\hat{g}_{t}} - \frac{\phi \pi^2 g}{2} \left(e^{\hat{\pi}_{t}}-1\right)^2\label{eq:AS_C3}
e^{\hat{c}_{t}-\hat{y}_{t}} &= e^{-\hat{g}_{t}} - \frac{\phi \pi^2 g}{2} {\left(e^{\hat{\pi}_{t}}-1\right)}^2\label{eq:AS_C3}
\\
\hat{R}_{t} &= \rho_R \hat{R}_{t-1} + (1-\rho_R) \psi_1 \hat{\pi}_{t} + (1-\rho_R)\psi_2(\hat{y}_{t}-\hat{g}_{t}) + \epsilon_{R,t}
\\
Expand All @@ -106,8 +112,8 @@ \subsection*{Model variants}
\hat{g}_{t} &= \rho_g \hat{g}_{t-1} + \epsilon_{g,t}
\end{align}

\paragraph{Model D: Log-linearization}
Taking the first-order Taylor approximation in logged variables (aka hat variables) yields:
\paragraph{Model D:\ Log-linearization}
Taking the first-order Taylor approximation in logged variables (also known as hat variables) yields:
\begin{align}
\hat{y}_{t} &= \mathbb{E}_t \hat{y}_{t+1} + \hat{g}_{t} - E_t\hat{g}_{t+1} - \frac{1}{\tau} \left(\hat{R}_{t}- \mathbb{E}_t \hat{\pi}_{t+1} - \mathbb{E}_t \hat{z}_{t+1}\right) \label{eq:AS_D1}
\\
Expand All @@ -121,16 +127,16 @@ \subsection*{Model variants}
\\
\hat{z}_{t} &= \rho_z \hat{z}_{t-1} + \epsilon_{z,t}
\end{align}
where $\beta = \frac{1}{1+R^{A}/400}$ and $\kappa=\tau\frac{1-\nu}{\nu\bar{\pi}^2\phi}$.
where \(\beta = \frac{1}{1+R^{A}/400}\) and \(\kappa=\tau\frac{1-\nu}{\nu\bar{\pi}^2\phi}\).

\paragraph{Measurement Equations}
The measurement equations are given by:
\begin{align}
YGR_t &= \gamma^{(Q)} + 100(\hat{y}_t-\hat{y}_{t-1} + \hat{z}_t)
{YGR}_t &= \gamma^{(Q)} + 100(\hat{y}_t-\hat{y}_{t-1} + \hat{z}_t)
\\
INFL_t &= \pi^{(A)} + 400 \hat{\pi}_t
{INFL}_t &= \pi^{(A)} + 400 \hat{\pi}_t
\\
INT_t &= \pi^{(A)} + r^{(A)} + 4 \gamma^{(Q)} 400 \hat{R}_t
{INT}_t &= \pi^{(A)} + r^{(A)} + 4 \gamma^{(Q)} 400 \hat{R}_t
\end{align}

\subsection*{Exercises}
Expand All @@ -143,25 +149,25 @@ \subsection*{Exercises}

\item Derive (on paper)
\begin{itemize}
\item equation \eqref{eq:AS_C1} from equation \eqref{eq:AS_B1}
\item equation \eqref{eq:AS_D1} by combining the first-order Taylor expansion of equations \eqref{eq:AS_C1} and \eqref{eq:AS_C3}
\item equation~\eqref{eq:AS_C1} from equation~\eqref{eq:AS_B1}
\item equation~\eqref{eq:AS_D1} by combining the first-order Taylor expansion of equations~\eqref{eq:AS_C1} and~\eqref{eq:AS_C3}
\end{itemize}

\item Write a mod file for Model B (including the measurement equations) in Dynare
and solve it using a first-order perturbation approximation of the policy function.
Make note of the impulse response functions and of the theoretical moments.

\item Write a mod file for Model C (including the measurement equations)in Dynare
\item Write a mod file for Model C (including the measurement equations) in Dynare
and solve it using a first-order perturbation approximation of the policy function.
Make note of the impulse response functions and of the theoretical moments.
Compare the theoretical moments and explain the differences or equivalences to Model B.

\item Write a mod file for Model D (including the measurement equations)in Dynare,
\item Write a mod file for Model D (including the measurement equations) in Dynare,
and solve it using a first-order perturbation approximation of the policy function.
Make note of the impulse response functions and of the theoretical moments
Compare the theoretical moments and explain the differences or equivalences with Model C.

\item What are the advantages and disadvantages of (log-)linearizing model equations by hand
\item What are the advantages and disadvantages of log-linearizing model equations by hand
or by using first-order perturbation on the nonlinear model equations?

\end{enumerate}
Expand All @@ -172,7 +178,7 @@ \subsection*{Exercises}
\end{itemize}

\begin{solution}\textbf{Solution to \nameref{ex:LogLinearization}}
\ifDisplaySolutions
\ifDisplaySolutions%
\input{exercises/log_linearization_solution.tex}
\fi
\newpage
Expand Down
23 changes: 23 additions & 0 deletions literature/_biblio.bib
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,19 @@ @article{Aruoba.Fernandez-Villaverde_2015_ComparisonProgrammingLanguages
annotation = {note the Update available at https://www.sas.upenn.edu/{\textasciitilde}jesusfv/Update\_March\_23\_2018.pdf}
}

@article{Ascari.Sbordone_2014_MacroeconomicsTrendInflation,
title = {The {{Macroeconomics}} of {{Trend Inflation}}},
author = {Ascari, Guido and Sbordone, Argia M.},
year = {2014},
month = sep,
journal = {Journal of Economic Literature},
volume = {52},
number = {3},
pages = {679--739},
doi = {10.1257/jel.52.3.679},
abstract = {Most macroeconomic models for monetary policy analysis are approximated around a zero inflation steady state, but most central banks target an inflation rate of about 2 percent. Many economists have recently proposed even higher inflation targets to reduce the incidence of the zero lower bound constraint on monetary policy. In this survey, we show that the conduct of monetary policy should be analyzed by appropriately accounting for the positive trend inflation targeted by policymakers. We first review empirical research on the evolution and dynamics of U.S. trend inflation and some proposed new measures to assess the volatility and persistence of trend-based inflation gaps. We then construct a Generalized New Keynesian model that accounts for a positive trend inflation. In this model, an increase in trend inflation is associated with a more volatile and unstable economy and tends to destabilize inflation expectations. This analysis offers a note of caution regarding recent proposals to address the existing zero lower bound problem by raising the long-run inflation target. (JEL E12, E31, E32, E52, E58)}
}

@article{Baxter.King_1993_FiscalPolicyGeneral,
title = {Fiscal {{Policy}} in {{General Equilibrium}}},
author = {Baxter, Marianne and King, Robert G.},
Expand Down Expand Up @@ -230,6 +243,16 @@ @book{Heijdra_2017_FoundationsModernMacroeconomics
keywords = {Macroeconomics,Problems and exercises,Problems exercises etc}
}

@book{Herbst.Schorfheide_2016_BayesianEstimationDSGE,
title = {Bayesian {{Estimation}} of {{DSGE Models}}},
author = {Herbst, Edward and Schorfheide, Frank},
year = {2016},
series = {The {{Econometric}} and {{Tinbergen Institutes Lectures}}},
publisher = {Princeton University Press},
abstract = {Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations.},
isbn = {978-0-691-16108-2}
}

@article{Ivashchenko.Mutschler_2020_EffectObservablesFunctional,
title = {The Effect of Observables, Functional Specifications, Model Features and Shocks on Identification in Linearized {{DSGE}} Models},
author = {Ivashchenko, Sergey and Mutschler, Willi},
Expand Down
42 changes: 42 additions & 0 deletions week_10.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
% !TEX root = week_10.tex
\input{exercises/_common_header.tex}
\Newassociation{solution}{Solution}{week_10_solution}
\newif\ifDisplaySolutions%\DisplaySolutionstrue

\begin{document}
\title{Computational Macroeconomics\\~\\Summer 2024\\~\\Week 10}
\author{Willi Mutschler\\[email protected]}
\date{Version: 1.0\\Latest version available on: \href{https://github.com/wmutschl/Computational-Macroeconomics/releases/latest/download/week_10.pdf}{GitHub}}
\maketitle\thispagestyle{empty}

\newpage
\Opensolutionfile{week_10_solution}[week_10_solution]
\tableofcontents\thispagestyle{empty}\newpage

\setcounter{page}{1}
\input{exercises/an_schorfheide_identif_bk.tex}\newpage
\input{exercises/log_linearization.tex}\newpage
\input{exercises/case_study_ascari_sbordone_2014.tex}\newpage

\printbibliography%

\newpage

\appendix

\section{Helper functions for New Keynesian Trend Inflation model}

\subsection{ascari\_sbordone\_2014\_common.mod\label{app:ascari_sbordone_2014_common}}
\lstinputlisting[style=Matlab-editor,basicstyle=\mlttfamily\scriptsize,title=\lstname]{progs/replications/Ascari_Sbordone_2014/ascari_sbordone_2014_common.mod}

\subsection{ascari\_sbordone\_2014\_calib\_common.mod\label{app:ascari_sbordone_2014_calib_common}}
\lstinputlisting[style=Matlab-editor,basicstyle=\mlttfamily\scriptsize,title=\lstname]{progs/replications/Ascari_Sbordone_2014/ascari_sbordone_2014_calib_common.inc}

\Closesolutionfile{week_10_solution}
\ifDisplaySolutions%
\newpage
\appendix
\section{Solutions}
\input{week_10_solution}
\fi
\end{document}
Loading

0 comments on commit 381d7f0

Please sign in to comment.