-
Notifications
You must be signed in to change notification settings - Fork 103
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[misc] feat: support mfu calculation (#117)
- Loading branch information
1 parent
1ec5eb5
commit 41f645d
Showing
4 changed files
with
155 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# Copyright 2024 Bytedance Ltd. and/or its affiliates | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import torch | ||
from transformers import PretrainedConfig, Qwen2Config, LlamaConfig | ||
|
||
VALID_CONFIG_TYPE = (Qwen2Config, LlamaConfig) | ||
|
||
|
||
def get_device_flops(unit="T"): | ||
|
||
def unit_convert(number, level): | ||
units = ["B", "K", "M", "G", "T", "P"] | ||
if number <= 0: | ||
return number | ||
ptr = 0 | ||
while ptr < len(units) and units[ptr] != level: | ||
number /= 1000 | ||
ptr += 1 | ||
return number | ||
|
||
device_name = torch.cuda.get_device_name() | ||
flops = float("inf") # INF flops for unkown gpu type | ||
if "H100" in device_name or "H800" in device_name: | ||
flops = 989e12 | ||
elif "A100" in device_name or "A800" in device_name: | ||
flops = 312e12 | ||
elif "L40" in device_name: | ||
flops = 181.05e12 | ||
elif "L20" in device_name: | ||
flops = 119.5e12 | ||
elif "H20" in device_name: | ||
flops = 148e12 | ||
elif "910B" in device_name: | ||
flops = 354e12 | ||
flops_unit = unit_convert(flops, unit) | ||
return flops_unit | ||
|
||
|
||
class FlopsCounter: | ||
""" | ||
Used to count mfu during training loop | ||
Example: | ||
flops_counter = FlopsCounter(config) | ||
flops_achieved, flops_promised = flops_counter.estimate_flops(tokens_list, delta_time) | ||
""" | ||
|
||
def __init__(self, config: PretrainedConfig): | ||
if not isinstance(config, VALID_CONFIG_TYPE): | ||
print(f"Only support config type of {VALID_CONFIG_TYPE}, but got {type(config)}. " | ||
f"MFU will always be zero.") | ||
|
||
self.estimate_func = {"qwen2": self._estimate_qwen2_flops, 'llama': self._estimate_qwen2_flops} | ||
self.config = config | ||
|
||
def _estimate_unknown_flops(self, tokens_sum, batch_seqlens, delta_time): | ||
return 0 | ||
|
||
def _estimate_qwen2_flops(self, tokens_sum, batch_seqlens, delta_time): | ||
assert isinstance(self.config, (Qwen2Config, LlamaConfig)) | ||
hidden_size = self.config.hidden_size | ||
vocab_size = self.config.vocab_size | ||
num_hidden_layers = self.config.num_hidden_layers | ||
num_key_value_heads = self.config.num_key_value_heads | ||
num_attention_heads = self.config.num_attention_heads | ||
intermediate_size = self.config.intermediate_size | ||
|
||
head_dim = hidden_size // num_attention_heads | ||
q_size = num_attention_heads * head_dim | ||
k_size = num_key_value_heads * head_dim | ||
v_size = num_key_value_heads * head_dim | ||
|
||
# non-attn per layer parm | ||
# Qwen2/LLama use SwiGelu, gate, having up and down linear layer in mlp | ||
mlp_N = hidden_size * intermediate_size * 3 | ||
attn_linear_N = hidden_size * (q_size + k_size + v_size + num_attention_heads * head_dim) | ||
emd_and_lm_head_N = vocab_size * hidden_size * 2 | ||
# non-attn all_layer parm | ||
dense_N = (mlp_N + attn_linear_N) * num_hidden_layers + emd_and_lm_head_N | ||
# non-attn all_layer & all_token fwd & bwd flops | ||
dense_N_flops = 6 * dense_N * tokens_sum | ||
|
||
# attn all_layer & all_token fwd & bwd flops | ||
seqlen_square_sum = 0 | ||
for seqlen in batch_seqlens: | ||
seqlen_square_sum += seqlen * seqlen | ||
attn_qkv_flops = 12 * seqlen_square_sum * head_dim * num_attention_heads * num_hidden_layers | ||
|
||
# all_layer & all_token fwd & bwd flops | ||
flops_all_token = dense_N_flops + attn_qkv_flops | ||
flops_achieved = flops_all_token * (1.0 / delta_time) / 1e12 | ||
return flops_achieved | ||
|
||
def estimate_flops(self, batch_seqlens, delta_time): | ||
""" | ||
Estimate the FLOPS based on the number of valid tokens in the current batch and the time taken. | ||
Args: | ||
batch_seqlens (List[int]): A list where each element represents the number of valid tokens in the current batch. | ||
delta_time (float): The time taken to process the batch, in seconds. | ||
Returns: | ||
estimated_flops (float): The estimated FLOPS based on the input tokens and time. | ||
promised_flops (float): The expected FLOPS of the current device. | ||
""" | ||
tokens_sum = sum(batch_seqlens) | ||
func = self.estimate_func.get(self.config.model_type, self._estimate_unknown_flops) | ||
estimated_flops = func(tokens_sum, batch_seqlens, delta_time) | ||
promised_flops = get_device_flops() | ||
return estimated_flops, promised_flops |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters