-
-
Notifications
You must be signed in to change notification settings - Fork 325
Usage
Human
library does not require special initialization
All configuration is done in a single JSON object and all model weights are dynamically loaded upon their first usage
(and only then, Human
will not load weights that it doesn't need according to configuration).
There is only ONE method you need:
// 'image': can be of any type of an image object: HTMLImage, HTMLVideo, HTMLMedia, Canvas, Tensor4D
// 'config': optional parameter used to override any options present in default configuration
// configuration is fully dynamic and can change between different calls to 'detect()'
const result = await human.detect(image, config?)
or if you want to use promises
human.detect(image, config?).then((result) => {
// your code
})
If you're processing video input, you may want to interpolate results for smoother output
After calling detect
method, simply call next
method when you need a new interpolated frame
Result
Parameter to next
method is optional and if not provided, it will use last known result
Example that performs single detection and then draws new interpolated result at 50 frames per second:
const result = await human.detect(image, config?)
setInterval(() => {
const interpolated = human.next(result);
human.draw.all(canvas, result);
}, 1000 / 50);
Human
library exposes several additional objects and methods:
human.version // string containing version of human library
human.config // access to configuration object, normally set as parameter to detect()
human.result // access to last known result object, normally returned via call to detect()
human.performance // access to last known performance counters
human.state // <string> describing current operation in progress
// progresses through: 'config', 'check', 'backend', 'load', 'run:<model>', 'idle'
human.sysinfo // object containing current client platform and agent
human.load(config) // explicitly call load method that loads configured models
// if you want to pre-load them instead of on-demand loading during 'human.detect()'
human.image(image, config?) // runs image processing without detection and returns canvas
human.warmup(config, image? // warms up human library for faster initial execution after loading
// if image is not provided, it will generate internal sample
human.models // dynamically maintained list of object of any loaded models
human.tf // instance of tfjs used by human
Additional functions used for face recognition:
For details, see embedding documentation
human.similarity(embedding1, embedding2) // runs similarity calculation between two provided embedding vectors
// vectors for source and target must be previously detected using
// face.description module
human.match(embedding, db, threshold) // finds best match for current face in a provided list of faces
human.enhance(face) // returns enhanced tensor of a previously detected face that can be used for visualizations
Human
library can attempt to detect outlines of people in provided input and either remove background from input
or replace it with a user-provided background image
const inputCanvas = document.getElementById('my-canvas);
const replacementBackground = document.getElementById('my-background);
human.segmentation(inputCanvas, replacementBackground);
Additional helper functions inside human.draw
:
human.draw.all(canvas, result) // interpolates results for smoother operations
// and triggers each individual draw operation
human.draw.person(canvas, result) // triggers unified person analysis and draws bounding box
human.draw.canvas(inCanvas, outCanvas) // simply copies one canvas to another,
// can be used to draw results.canvas to user canvas on page
human.draw.face(canvas, results.face) // draw face detection results to canvas
human.draw.body(canvas, results.body) // draw body detection results to canvas
human.draw.hand(canvas, result.hand) // draw hand detection results to canvas
human.draw.object(canvas, result.object) // draw object detection results to canvas
human.draw.gesture(canvas, result.gesture) // draw detected gesture results to canvas
Style of drawing is configurable via human.draw.options
object:
color: 'rgba(173, 216, 230, 0.3)', // 'lightblue' with light alpha channel
labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel
shadowColor: 'black', // draw shadows underneath labels, set to blank to disable
font: 'small-caps 16px "Segoe UI"', // font used for labels
lineHeight: 20, // spacing between lines for multi-line labels
lineWidth: 6, // line width of drawn polygons
drawPoints: true, // draw detected points in all objects
pointSize: 2, // size of points
drawLabels: true, // draw labels with detection results
drawBoxes: true, // draw boxes around detected faces
roundRect: 8, // should boxes have round corners and rounding value
drawPolygons: true, // draw polygons such as body and face mesh
fillPolygons: false, // fill polygons in face mesh
useDepth: true, // use z-axis value when available to determine color shade
useCurves: false, // draw polygons and boxes using smooth curves instead of lines
bufferedOutput: true, // experimental: buffer and interpolate results between frames
Example simple app that uses Human to process video input and
draw output on screen using internal draw helper functions
import Human from '@vladmandic/human';
// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config);
function detectVideo() {
// select input HTMLVideoElement and output HTMLCanvasElement from page
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
// perform processing using default configuration
human.detect(inputVideo).then((result) => {
// result object will contain detected details
// as well as the processed canvas itself
// so lets first draw processed frame on canvas
human.draw.canvas(result.canvas, outputCanvas);
// then draw results on the same canvas
human.draw.face(outputCanvas, result.face);
human.draw.body(outputCanvas, result.body);
human.draw.hand(outputCanvas, result.hand);
human.draw.gesture(outputCanvas, result.gesture);
// loop immediate to next frame
requestAnimationFrame(detectVideo);
});
}
detectVideo();
Note that when using Human
library in NodeJS
, you must load and parse the image before you pass it for detection and dispose it afterwards
Input format is Tensor4D[1, width, height, 3]
of type float32
For example:
const imageFile = '../assets/sample1.jpg';
const buffer = fs.readFileSync(imageFile);
const decoded = tf.node.decodeImage(buffer);
const casted = decoded.toFloat();
const image = casted.expandDims(0);
decoded.dispose();
casted.dispose();
logger.log('Processing:', image.shape);
const human = new Human.Human();
const result = await human.detect(image, config);
image.dispose();
Human Library Wiki Pages
3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition