-
-
Notifications
You must be signed in to change notification settings - Fork 325
Inputs
- In Browser environments, actual browser provides functionality of decoding inputs (e.g. JPG image or MP4 video)
- In NodeJS environments, decoding must be performed manually
Human
allows input to be in many different formats and will perform automatic processing of inputs to interally required format
type Input = Tensor | AnyCanvas | AnyImage | AnyVideo | ImageObjects | ExternalCanvas;
type AnyCanvas = HTMLCanvasElement | OffscreenCanvas;
type AnyImage = HTMLImageElement | typeof Image
type AnyVideo = HTMLMediaElement | HTMLVideoElement
type ImageObjects = ImageData | ImageBitmap
type ExternalCanvas = typeof env.Canvas | typeof globalThis.Canvas;
All primary functionality of Human
is available, but human.draw
methods cannot be used as canvas
implementation is not present
const tf = require('@tensorflow/tfjs-node');
const buffer = fs.readFileSync(inputFile); // read file content into a binary buffer
const tensor = human.tf.node.decodeImage(buffer); // decode jpg/png data to raw pixels
const result = await human.detect(tensor); // perform processing
human.tf.dispose(tensor); // dispose input data, required when working with tensors
Note: For all processing, correct input tensor shape [1, height, width, 3]
and dtype float32
- 1 means batch number and is a fixed value
- 3 means number of channels so 3 is used for RGB format
However Human
will automatically convert input tensor to a correct shape
- if batch number is omitted
- if input image is 4-channels such as in RGBA images with alpha channel
- if input tensor is in different data type such as
int32
By instructing Human
to use 3rd party module for canvas
operations
This method allows Human
to use human.draw.*
methods in NodeJS
const canvas = require('canvas');
globalThis.Canvas = canvas.Canvas; // patch global namespace with canvas library
globalThis.ImageData = canvas.ImageData; // patch global namespace with canvas library
// human.env.Canvas = canvas.Canvas; // alternatively monkey-patch human to use external canvas library
// human.env.ImageData = canvas.ImageData; // alternatively monkey-patch human to use external canvas library
const inputImage = await canvas.loadImage(inputFile); // load image using canvas library
const inputCanvas = new canvas.Canvas(inputImage.width, inputImage.height); // create canvas
const ctx = inputCanvas.getContext('2d');
ctx.drawImage(inputImage, 0, 0); // draw input image onto canvas
const result = await human.detect(inputCanvas);
Using node-canvas
to load and decode input files only
const canvas = require('canvas');
const img = await canvas.loadImage(inputFile); // read and decode image file
const myCanvas = canvas.createCanvas(img.width, img.height); // create canvas element
const ctx = myCanvas.getContext('2d');
ctx.drawImage(img, 0, 0, img.width, img.height); // draw loaded image onto canvas
const imageData = ctx.getImageData(0, 0, myCanvas.width, myCanvas.height); // read pixel data from canvas
const tensor = human.tf.tensor(imageData.data); // create tensor from pixel data
const result = await human.detect(tensor); // perform processing
human.tf.dispose(tensor); // dispose input data, required when working with tensors
Human Library Wiki Pages
3D Face Detection, Body Pose, Hand & Finger Tracking, Iris Tracking, Age & Gender Prediction, Emotion Prediction & Gesture Recognition