Skip to content
Vladimir Mandic edited this page Apr 13, 2021 · 29 revisions

Usage

Human library does not require special initialization
All configuration is done in a single JSON object and all model weights are dynamically loaded upon their first usage
(and only then, Human will not load weights that it doesn't need according to configuration).

Full API Specification


There is only ONE method you need:

  // 'image': can be of any type of an image object: HTMLImage, HTMLVideo, HTMLMedia, Canvas, Tensor4D  
  // 'config': optional parameter used to override any options present in default configuration  
  // configuration is fully dynamic and can change between different calls to 'detect()'  
  const result = await human.detect(image, config?)

or if you want to use promises

  human.detect(image, config?).then((result) => {
    // your code
  })

Additionally, Human library exposes several objects and methods:

  human.version       // string containing version of human library
  human.tf            // instance of tfjs used by human
  human.config        // access to configuration object, normally set as parameter to detect()
  human.state         // <string> describing current operation in progress
                      // progresses through: 'config', 'check', 'backend', 'load', 'run:<model>', 'idle'
  human.sysinfo       // object containing current client platform and agent
  human.load(config)  // explicitly call load method that loads configured models
                      // if you want to pre-load them instead of on-demand loading during 'human.detect()'
  human.image(image, config?) // runs image processing without detection and returns canvas
  human.warmup(config, image? // warms up human library for faster initial execution after loading
                              // if image is not provided, it will generate internal sample
  human.similarity(embedding1, embedding2) // runs similarity calculation between two provided embedding vectors
                                            // vectors for source and target must be previously detected using
                                            // face.embedding module
  human.enhance(face) // returns enhanced tensor of a previously detected face that can be used for visualizations

Additional functions used for face recognition:
For details, see embedding documentation

  human.similarity(embedding1, embedding2) // runs similarity calculation between two provided embedding vectors
                                            // vectors for source and target must be previously detected using
                                            // face.embedding module
  human.match(embedding, db, threshold)     // finds best match for current face in a provided list of faces
  human.enhance(face) // returns enhanced tensor of a previously detected face that can be used for visualizations

Internal list of modules and objects used by current instance of Human:

  human.models        // dynamically maintained list of object of any loaded models
  human.classes       // dynamically maintained list of classes that perform detection on each model

Additional helper functions inside human.draw:

  human.draw.canvas(inCanvas, outCanvas)     // simply copies one canvas to another,  
                                             // can be used to draw results.canvas to user canvas on page
  human.draw.face(canvas, results.face)      // draw face detection results to canvas
  human.draw.body(canvas, results.body)      // draw body detection results to canvas
  human.draw.hand(canvas, result.hand)       // draw hand detection results to canvas
  human.draw.object(canvas, result.object)   // draw object detection results to canvas
  human.draw.gesture(canvas, result.gesture) // draw detected gesture results to canvas

Style of drawing is configurable via human.draw.options object:

  color: 'rgba(173, 216, 230, 0.3)',    // 'lightblue' with light alpha channel
  labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel
  shadowColor: 'black',                 // draw shadows underneath labels, set to blank to disable
  font: 'small-caps 16px "Segoe UI"',   // font used for labels
  lineHeight: 20,                       // spacing between lines for multi-line labels
  lineWidth: 6,                         // line width of drawn polygons
  drawPoints: true,                     // draw detected points in all objects
  pointSize: 2,                         // size of points
  drawLabels: true,                     // draw labels with detection results
  drawBoxes: true,                      // draw boxes around detected faces
  roundRect: 8,                         // should boxes have round corners and rounding value
  drawPolygons: true,                   // draw polygons such as body and face mesh
  fillPolygons: true,                   // fill polygons in face mesh
  useDepth: true,                       // use z-axis value when available to determine color shade
  useCurves: true,                      // draw polygons and boxes using smooth curves instead of lines
  bufferedOutput: false,                // experimental: buffer and interpolate results between frames

Example simple app that uses Human to process video input and
draw output on screen using internal draw helper functions

import Human from '@vladmandic/human';

// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config);

function detectVideo() {
  // select input HTMLVideoElement and output HTMLCanvasElement from page
  const inputVideo = document.getElementById('video-id');
  const outputCanvas = document.getElementById('canvas-id');
  // perform processing using default configuration
  human.detect(inputVideo).then((result) => {
    // result object will contain detected details
    // as well as the processed canvas itself
    // so lets first draw processed frame on canvas
    human.draw.canvas(result.canvas, outputCanvas);
    // then draw results on the same canvas
    human.draw.face(outputCanvas, result.face);
    human.draw.body(outputCanvas, result.body);
    human.draw.hand(outputCanvas, result.hand);
    human.draw.gesture(outputCanvas, result.gesture);
    // loop immediate to next frame
    requestAnimationFrame(detectVideo);
  });
}

detectVideo();

Note that when using Human library in NodeJS, you must load and parse the image before you pass it for detection and dispose it afterwards
Input format is Tensor4D[1, width, height, 3] of type float32

For example:

  const imageFile = '../assets/sample1.jpg';
  const buffer = fs.readFileSync(imageFile);
  const decoded = tf.node.decodeImage(buffer);
  const casted = decoded.toFloat();
  const image = casted.expandDims(0);
  decoded.dispose();
  casted.dispose();
  logger.log('Processing:', image.shape);
  const human = new Human.Human();
  const result = await human.detect(image, config);
  image.dispose();



Clone this wiki locally