Skip to content

Commit

Permalink
Release v0.3.0
Browse files Browse the repository at this point in the history
    - Fix #31. Failed when axis!=0
    - Change API. Only expose:
        * significant_digits
        * contributing_bits
        * probability_estimation_bernoulli
        * minimum_number_of_trials
        * Method, Error
    - Add tests for compute_z
    - Add docs with pdoc
    - Generate github-pages with github/actions

Escape python-version in github/actions
  • Loading branch information
yohanchatelain committed Dec 21, 2023
1 parent e60518b commit 8e5f087
Show file tree
Hide file tree
Showing 9 changed files with 484 additions and 271 deletions.
43 changes: 43 additions & 0 deletions .github/workflows/docs.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
name: website

# build the documentation whenever there are new commits on main
on:
push:
branches:
- main

# security: restrict permissions for CI jobs.
permissions:
contents: read

jobs:
# Build the documentation and upload the static HTML files as an artifact.
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: '3.12'

- run: pip install .
- run: pdoc -d numpy -t pdoc/template/ --math -o docs significantdigits/

- uses: actions/upload-pages-artifact@v2
with:
path: docs/

# Deploy the artifact to GitHub pages.
# This is a separate job so that only actions/deploy-pages has the necessary permissions.
deploy:
needs: build
runs-on: ubuntu-latest
permissions:
pages: write
id-token: write
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
steps:
- id: deployment
uses: actions/deploy-pages@v2
8 changes: 6 additions & 2 deletions .github/workflows/python-app.yml
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,16 @@ jobs:

runs-on: ubuntu-latest

strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]

steps:
- uses: actions/checkout@v3
- name: Set up Python 3.10
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: "3.10"
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
Expand Down
92 changes: 58 additions & 34 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# significantdigits package - v0.2.0
# significantdigits package - v0.3.0

Compute the number of significant digits basis on the paper [Confidence Intervals for Stochastic Arithmetic](https://arxiv.org/abs/1807.09655).
Compute the number of significant digits based on the paper [Confidence Intervals for Stochastic Arithmetic](https://arxiv.org/abs/1807.09655).
This package is also inspired by the [Jupyter Notebook](https://github.com/interflop/stochastic-confidence-intervals/blob/master/Intervals.ipynb) included with the publication.

## Getting started
Expand All @@ -9,14 +9,14 @@ This synthetic example illustrates how to compute significant digits
of a results sample with a given known reference:

```python
>>> import significantdigits as sig
>>> import significantdigits as sd
>>> import numpy as np
>>> from numpy.random import uniform as U
>>> np.random.seed(0)
>>> eps = 2**-52
>>> # simulates results with epsilon differences
>>> X = [1+U(-1,1)*eps for _ in range(10)]
>>> sig.significant_digits(X, reference=1)
>>> sd.significant_digits(X, reference=1)
>>> 51.02329058847853
```

Expand All @@ -30,21 +30,21 @@ If the reference is unknown, one can use the sample average:

```python
...
>>> sig.significant_digits(X, reference=np.mean(X))
>>> sd.significant_digits(X, reference=np.mean(X))
>>> 51.02329058847853
```
## Installation

```bash
python3 -m pip install -U significantdigits
python3 -m pip install -U significantdigits
```

or if you want the latest version of the code, you can install it **from** the repository directly

```bash
python3 -m pip install -U git+https://github.com/verificarlo/significantdigits.git
# or if you don't have 'git' installed
python3 -m pip install -U https://github.com/verificarlo/significantdigits/zipball/master
python3 -m pip install -U git+https://github.com/verificarlo/significantdigits.git
# or if you don't have 'git' installed
python3 -m pip install -U https://github.com/verificarlo/significantdigits/zipball/master
```

## Advanced Usage
Expand All @@ -53,13 +53,13 @@ or if you want the latest version of the code, you can install it **from** the r

Functions accept the following types of inputs:
```python
InputType: np.ndarray | tuple | list
InputType: ArrayLike
```
Those types are accessible with the `get_input_type` function.
Those types are accessible with the `numpy.typing.ArrayLike` type.

### Z computation
Metrics are computed using Z, the distance between the samples and the reference.
They are four possible cases depending on the distance and the nature of the reference that is summarized in this table:
There are four possible cases depending on the distance and the nature of the reference that are summarized in this table:

| | constant reference (x) | random variable reference (Y) |
| ------------------ | ---------------------- | ----------------------------- |
Expand All @@ -68,7 +68,11 @@ They are four possible cases depending on the distance and the nature of the ref


```python
compute_z(array: ~InputType, reference: Optional[~ReferenceType], error: significantdigits._significantdigits.Error | str, axis: int, shuffle_samples: bool = False) -> ~InputType
_compute_z(array: InternalArrayType,
reference: InternalArrayType | None,
error: Error | str,
axis: int,
shuffle_samples: bool = False) -> InternalArrayType
Compute Z, the distance between the random variable and the reference

Compute Z, the distance between the random variable and the reference
Expand All @@ -88,11 +92,11 @@ compute_z(array: ~InputType, reference: Optional[~ReferenceType], error: signifi

Parameters
----------
array : InputType
array : InternalArrayType
The random variable
reference : Optional[ReferenceType]
reference : Optional[InternalArrayType]
The reference to compare against
error : Method.Error | str
error : Error | str
The error function to compute Z
axis : int, default=0
The axis or axes along which compute Z
Expand All @@ -101,7 +105,7 @@ compute_z(array: ~InputType, reference: Optional[~ReferenceType], error: signifi

Returns
-------
array : numpy.ndarray
array : InternalArrayType
The result of Z following the error method choose
```

Expand Down Expand Up @@ -129,10 +133,18 @@ class Method(AutoName):


```python
significant_digits(array: ~InputType,
reference: Optional[~ReferenceType] = None,
axis: int = 0, basis: int = 2,
error: str | significantdigits._significantdi
significant_digits(array: InputType,
reference: ReferenceType | None = None,
axis: int = 0,
basis: int = 2,
error: Error | str,
method: Method | str,
probability: float = 0.95,
confidence: float = 0.95,
shuffle_samples: bool = False,
dtype: DTypeLike | None = None
) -> ArrayLike

Compute significant digits

This function computes with a certain probability
Expand All @@ -142,7 +154,7 @@ significant_digits(array: ~InputType,
----------
array: InputType
Element to compute
reference: Optional[ReferenceType], optional=None
reference: ReferenceType | None, optional=None
Reference for comparing the array
axis: int, optional=0
Axis or axes along which the significant digits are computed
Expand All @@ -160,7 +172,7 @@ significant_digits(array: ~InputType,
If reference is None, the array is split in two and \
comparison is done between both pieces. \
If shuffle_samples is True, it shuffles pieces.
dtype : np.dtype, default=None
dtype : dtype_like | None, default=None
Numerical type used for computing significant digits
Widest format between array and reference is taken if no supplied.

Expand All @@ -174,10 +186,20 @@ significant_digits(array: ~InputType,
### Contributing digits

```python
contributing_digits(array: ~InputType, reference: Optional[~ReferenceType] = None, axis: int = 0, basis: int = 2, error: str | significantdigits._significantdigits.Error = <Error.Re$
contributing_digits(array: InputType,
reference: ReferenceType | None = None,
axis: int = 0,
basis: int = 2,
error: Error | str,
method: Method | str,
probability: float = 0.51,
confidence: float = 0.95,
shuffle_samples: bool = False,
dtype: DTypeLike | None = None
) -> ArrayLike

Compute contributing digits


This function computes with a certain probability the number of bits
of the mantissa that will round the result towards the correct reference
value[1]_
Expand All @@ -186,7 +208,7 @@ contributing_digits(array: ~InputType, reference: Optional[~ReferenceType] = Non
----------
array: InputArray
Element to compute
reference: Optional[ReferenceArray], default=None
reference: ReferenceArray | None, default=None
Reference for comparing the array
axis: int, default=0
Axis or axes along which the contributing digits are computed
Expand All @@ -205,7 +227,7 @@ contributing_digits(array: ~InputType, reference: Optional[~ReferenceType] = Non
If reference is None, the array is split in two and
comparison is done between both pieces.
If shuffle_samples is True, it shuffles pieces.
dtype : np.dtype, default=None
dtype : dtype_like | None, default=None
Numerical type used for computing contributing digits
Widest format between array and reference is taken if no supplied.

Expand All @@ -219,12 +241,10 @@ contributing_digits(array: ~InputType, reference: Optional[~ReferenceType] = Non

These are utility functions for the general case.

`probability_estimation_general`
allows having an estimation
on the lower bound probability given the sample size.
#### `probability_estimation_general`

Estimates the lower bound probability given the sample size.

`minimum_number_of_trials` gives the minimal sample size
required to reach the requested `probability` and `confidence`.

```python
probability_estimation_general(success: int, trials: int, confidence: float) -> float
Expand All @@ -250,8 +270,12 @@ probability_estimation_general(success: int, trials: int, confidence: float) ->
The lower bound probability with `confidence` level to have `success` successes for `trials` trials
```

```python
#### `minimum_number_of_trials`

Returns the minimal sample size required to reach the requested `probability` and `confidence`.


```python
minimum_number_of_trials(probability: float, confidence: float) -> int
Computes the minimum number of trials to have probability and confidence

Expand All @@ -273,7 +297,6 @@ minimum_number_of_trials(probability: float, confidence: float) -> int
-------
int
Minimal sample size to have given probability and confidence

```

### License
Expand All @@ -285,3 +308,4 @@ See https://llvm.org/LICENSE.txt for license information.

Copyright (c) 2020-2023 Verificarlo Contributors

---
34 changes: 34 additions & 0 deletions pdoc/template/math.html.jinja2
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
{# This template is included in math mode and loads MathJax for formula rendering. #}
<script>
{#
MathJax by default does not define $ as a math delimiter because it's commonly used in non-mathematical settings.
We add it here. If you are unhappy with this default, you can override math.html.jinja2 with a custom template.
#}
window.MathJax = {
tex: {
inlineMath: [['$', '$'], ['\\(', '\\)']],
autoload: {
color: [],
colorV2: ['color'],
cases: [[], ['numcases', 'subnumcases']],
}
}
};
</script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>
/* Re-invoke MathJax when DOM content changes, for example during search. */
document.addEventListener("DOMContentLoaded", () => {
new MutationObserver(() => MathJax.typeset()).observe(
document.querySelector("main.pdoc").parentNode,
{childList: true}
);
})
</script>
<style>
mjx-container {
overflow-x: auto;
}
</style>
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "hatchling.build"

[project]
name = "significantdigits"
version = "0.2.0"
version = "0.3.0"
description = "Solid stochastic statistic analysis of Stochastic Arithmetic"
authors = [
{ name = "Verificarlo contributors", email = "[email protected]" },
Expand All @@ -31,6 +31,7 @@ dependencies = [
"scipy>=1.7.3",
"toml>=0.10.2",
"icecream>=2.1.3",
"pdoc>=14.2.0"
]

[tool.hatch.build]
Expand Down
32 changes: 31 additions & 1 deletion significantdigits/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,31 @@
from ._significantdigits import *
"""
.. include:: ../README.md
"""

from ._significantdigits import (
InputType,
ReferenceType,
Method,
Metric,
Error,
SignificantDigitsException,
significant_digits,
contributing_digits,
change_basis,
probability_estimation_bernoulli,
minimum_number_of_trials,
)

__all__ = [
"InputType",
"ReferenceType",
"Method",
"Metric",
"Error",
"SignificantDigitsException",
"significant_digits",
"contributing_digits",
"change_basis",
"probability_estimation_bernoulli",
"minimum_number_of_trials",
]
Loading

0 comments on commit 8e5f087

Please sign in to comment.