-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
91,566 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
import os | ||
from dotenv import load_dotenv | ||
from datasets import load_dataset | ||
from unsloth import FastMistralModel | ||
from trl import SFTTrainer | ||
from transformers import TrainingArguments | ||
from huggingface_hub import login | ||
import json | ||
import random | ||
from datasets import Dataset | ||
from datasets import concatenate_datasets | ||
import torch | ||
|
||
load_dotenv() | ||
|
||
HUGGING_FACE_ACCESS_TOKEN = os.getenv('HUGGING_FACE_ACCESS_TOKEN') | ||
login() | ||
|
||
max_seq_length = 4096 # Can change to whatever number <= 4096 | ||
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | ||
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | ||
|
||
model, tokenizer = FastMistralModel.from_pretrained( | ||
model_name="mistralai/Mistral-7B-Instruct-v0.1", # You can change this to any Llama model! | ||
max_seq_length=max_seq_length, | ||
dtype=dtype, | ||
load_in_4bit=load_in_4bit, | ||
# trust_remote_code=True, | ||
token=HUGGING_FACE_ACCESS_TOKEN, | ||
) | ||
model = FastMistralModel.get_peft_model( | ||
model, | ||
r=16, | ||
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", | ||
"gate_proj", "up_proj", "down_proj", ], | ||
lora_alpha=16, | ||
lora_dropout=0, # Currently only supports dropout = 0 | ||
bias="none", # Currently only supports bias = "none" | ||
use_gradient_checkpointing=True, | ||
random_state=3407, | ||
max_seq_length=max_seq_length, | ||
) | ||
|
||
dataset = load_dataset("HuggingFaceH4/ultrachat_200k", token=HUGGING_FACE_ACCESS_TOKEN) | ||
|
||
ultrachat_total_rows = len(dataset["train_sft"]) | ||
|
||
sai_data = [] | ||
with open('data/sai-processed.jsonl') as f: | ||
for line in f: | ||
sai_obj = json.loads(line) | ||
sai_data.append({ | ||
"prompt": sai_obj["initialPrompt"], | ||
"messages": [ | ||
{"content": sai_obj["initialPrompt"], "role": "user"}, | ||
{"content": sai_obj["revisionResponse"], "role": "assistant"} | ||
] | ||
}) | ||
|
||
sai_data = Dataset.from_list(sai_data) | ||
|
||
sai_data = sai_data.shuffle(seed=42) | ||
|
||
train_sft = dataset["train_sft"] | ||
train_sft = train_sft.shuffle(seed=42) | ||
test_sft = dataset["test_sft"] | ||
test_sft = test_sft.shuffle(seed=42) | ||
|
||
# i choose 50k sample for training and 2k for test | ||
train_sft_subset = train_sft.select(range(150000)) | ||
test_sft_subset = test_sft.select(range(3000)) | ||
|
||
# Get the same proportion of the SAI data as the Ultrachat data | ||
sai_train_sft = sai_data.select(range(int(len(train_sft_subset)/ultrachat_total_rows * len(sai_data)))) | ||
sai_test_sft = sai_data.select(range(int(len(test_sft_subset)/ultrachat_total_rows * len(sai_data)))) | ||
|
||
print("Ultrachat Total Rows: ", ultrachat_total_rows) | ||
print("Ultrachat Train Length: ", len(train_sft_subset)) | ||
print("Ultrachat Test Length: ", len(test_sft_subset)) | ||
print("SAI Data Length: ", len(sai_data)) | ||
print("SAI Train Length: ", len(sai_train_sft)) | ||
print("SAI Test Length: ", len(sai_test_sft)) | ||
|
||
train_sft_subset_len = len(train_sft_subset) - len(sai_train_sft) | ||
train_sft_subset = concatenate_datasets([train_sft_subset.select(range(train_sft_subset_len)), sai_train_sft]) | ||
|
||
test_sft_subset_len = len(test_sft_subset) - len(sai_test_sft) | ||
test_sft_subset = concatenate_datasets([test_sft_subset.select(range(test_sft_subset_len)), sai_test_sft]) | ||
|
||
print("Combined Train Length: ", len(train_sft_subset)) | ||
print("Combined Test Length: ", len(test_sft_subset)) | ||
|
||
def formatting_func(example): | ||
formatted_messages = [] | ||
|
||
for message in example['messages']: | ||
content = message['content'] | ||
role = message['role'] | ||
formatted_message = {"role": role, "content": content} | ||
formatted_messages.append(formatted_message) | ||
|
||
return {"text": "\n".join([str(msg) for msg in formatted_messages])} | ||
|
||
train_sft = train_sft_subset.map(formatting_func) | ||
test_sft = test_sft_subset.map(formatting_func) | ||
|
||
|
||
HAS_BFLOAT16 = torch.cuda.is_bf16_supported() | ||
learning_rate = 1e-4 | ||
weight_decay = 0.01 | ||
warmup_steps = 10 | ||
lr_scheduler_type = "linear" | ||
optimizer = "adamw_8bit" | ||
random_state = 3407 | ||
|
||
argument = TrainingArguments( | ||
per_device_train_batch_size = 1, | ||
gradient_accumulation_steps = 4, | ||
warmup_steps = warmup_steps, | ||
max_steps = 240, | ||
learning_rate = learning_rate, | ||
fp16 = not HAS_BFLOAT16, | ||
bf16 = HAS_BFLOAT16, | ||
logging_steps = 1, | ||
output_dir = "outputs", | ||
optim = optimizer, | ||
weight_decay = weight_decay, | ||
lr_scheduler_type = lr_scheduler_type, | ||
seed = random_state, | ||
report_to = "none", | ||
) | ||
|
||
trainer = SFTTrainer( | ||
model = model, | ||
train_dataset=train_sft, | ||
eval_dataset=test_sft, | ||
dataset_text_field = "text", | ||
max_seq_length = max_seq_length, | ||
args = argument, | ||
) | ||
|
||
trainer.train() | ||
|
||
trainer.save_model("./ultrachat_sai") | ||
|
||
trainer.push_to_hub("vanbujm/ultrachat_sai") | ||
tokenizer.push_to_hub("vanbujm/ultrachat_sai") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
--- | ||
library_name: transformers | ||
tags: | ||
- unsloth | ||
--- | ||
|
||
# Model Card for Model ID | ||
|
||
<!-- Provide a quick summary of what the model is/does. --> | ||
|
||
|
||
|
||
## Model Details | ||
|
||
### Model Description | ||
|
||
<!-- Provide a longer summary of what this model is. --> | ||
|
||
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. | ||
|
||
- **Developed by:** [More Information Needed] | ||
- **Funded by [optional]:** [More Information Needed] | ||
- **Shared by [optional]:** [More Information Needed] | ||
- **Model type:** [More Information Needed] | ||
- **Language(s) (NLP):** [More Information Needed] | ||
- **License:** [More Information Needed] | ||
- **Finetuned from model [optional]:** [More Information Needed] | ||
|
||
### Model Sources [optional] | ||
|
||
<!-- Provide the basic links for the model. --> | ||
|
||
- **Repository:** [More Information Needed] | ||
- **Paper [optional]:** [More Information Needed] | ||
- **Demo [optional]:** [More Information Needed] | ||
|
||
## Uses | ||
|
||
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> | ||
|
||
### Direct Use | ||
|
||
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> | ||
|
||
[More Information Needed] | ||
|
||
### Downstream Use [optional] | ||
|
||
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> | ||
|
||
[More Information Needed] | ||
|
||
### Out-of-Scope Use | ||
|
||
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> | ||
|
||
[More Information Needed] | ||
|
||
## Bias, Risks, and Limitations | ||
|
||
<!-- This section is meant to convey both technical and sociotechnical limitations. --> | ||
|
||
[More Information Needed] | ||
|
||
### Recommendations | ||
|
||
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> | ||
|
||
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. | ||
|
||
## How to Get Started with the Model | ||
|
||
Use the code below to get started with the model. | ||
|
||
[More Information Needed] | ||
|
||
## Training Details | ||
|
||
### Training Data | ||
|
||
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> | ||
|
||
[More Information Needed] | ||
|
||
### Training Procedure | ||
|
||
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> | ||
|
||
#### Preprocessing [optional] | ||
|
||
[More Information Needed] | ||
|
||
|
||
#### Training Hyperparameters | ||
|
||
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> | ||
|
||
#### Speeds, Sizes, Times [optional] | ||
|
||
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> | ||
|
||
[More Information Needed] | ||
|
||
## Evaluation | ||
|
||
<!-- This section describes the evaluation protocols and provides the results. --> | ||
|
||
### Testing Data, Factors & Metrics | ||
|
||
#### Testing Data | ||
|
||
<!-- This should link to a Dataset Card if possible. --> | ||
|
||
[More Information Needed] | ||
|
||
#### Factors | ||
|
||
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> | ||
|
||
[More Information Needed] | ||
|
||
#### Metrics | ||
|
||
<!-- These are the evaluation metrics being used, ideally with a description of why. --> | ||
|
||
[More Information Needed] | ||
|
||
### Results | ||
|
||
[More Information Needed] | ||
|
||
#### Summary | ||
|
||
|
||
|
||
## Model Examination [optional] | ||
|
||
<!-- Relevant interpretability work for the model goes here --> | ||
|
||
[More Information Needed] | ||
|
||
## Environmental Impact | ||
|
||
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> | ||
|
||
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). | ||
|
||
- **Hardware Type:** [More Information Needed] | ||
- **Hours used:** [More Information Needed] | ||
- **Cloud Provider:** [More Information Needed] | ||
- **Compute Region:** [More Information Needed] | ||
- **Carbon Emitted:** [More Information Needed] | ||
|
||
## Technical Specifications [optional] | ||
|
||
### Model Architecture and Objective | ||
|
||
[More Information Needed] | ||
|
||
### Compute Infrastructure | ||
|
||
[More Information Needed] | ||
|
||
#### Hardware | ||
|
||
[More Information Needed] | ||
|
||
#### Software | ||
|
||
[More Information Needed] | ||
|
||
## Citation [optional] | ||
|
||
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> | ||
|
||
**BibTeX:** | ||
|
||
[More Information Needed] | ||
|
||
**APA:** | ||
|
||
[More Information Needed] | ||
|
||
## Glossary [optional] | ||
|
||
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> | ||
|
||
[More Information Needed] | ||
|
||
## More Information [optional] | ||
|
||
[More Information Needed] | ||
|
||
## Model Card Authors [optional] | ||
|
||
[More Information Needed] | ||
|
||
## Model Card Contact | ||
|
||
[More Information Needed] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
{ | ||
"alpha_pattern": {}, | ||
"auto_mapping": null, | ||
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.1", | ||
"bias": "none", | ||
"fan_in_fan_out": false, | ||
"inference_mode": true, | ||
"init_lora_weights": true, | ||
"layer_replication": null, | ||
"layers_pattern": null, | ||
"layers_to_transform": null, | ||
"loftq_config": {}, | ||
"lora_alpha": 16, | ||
"lora_dropout": 0, | ||
"megatron_config": null, | ||
"megatron_core": "megatron.core", | ||
"modules_to_save": null, | ||
"peft_type": "LORA", | ||
"r": 16, | ||
"rank_pattern": {}, | ||
"revision": null, | ||
"target_modules": [ | ||
"o_proj", | ||
"v_proj", | ||
"k_proj", | ||
"up_proj", | ||
"gate_proj", | ||
"q_proj", | ||
"down_proj" | ||
], | ||
"task_type": "CAUSAL_LM", | ||
"use_dora": false, | ||
"use_rslora": false | ||
} |
Git LFS file not shown
Oops, something went wrong.