Skip to content

Commit

Permalink
Fix inaccurate informal statement.
Browse files Browse the repository at this point in the history
  • Loading branch information
GeorgeTsoukalas committed Oct 29, 2024
1 parent e2163be commit a99832e
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 3 deletions.
2 changes: 1 addition & 1 deletion informal/putnam.json
Original file line number Diff line number Diff line change
Expand Up @@ -2854,7 +2854,7 @@
},
{
"problem_name": "putnam_1996_a4",
"informal_statement": "Let $S$ be the set of ordered triples $(a, b, c)$ of distinct elements of a finite set $A$. Suppose that \\begin{enumerate} \\item $(a,b,c) \\in S$ if and only if $(b,c,a) \\in S$; \\item $(a,b,c) \\in S$ if and only if $(c,b,a) \\notin S$; \\item $(a,b,c)$ and $(c,d,a)$ are both in $S$ if and only if $(b,c,d)$ and $(d,a,b)$ are both in $S$. \\end{enumerate} Prove that there exists a one-to-one function $g$ from $A$ to $\\R$ such that $g(a) < g(b) < g(c)$ implies $(a,b,c) \\in S$.",
"informal_statement": "Let $S$ be a set of ordered triples $(a, b, c)$ of distinct elements of a finite set $A$. Suppose that \\begin{enumerate} \\item $(a,b,c) \\in S$ if and only if $(b,c,a) \\in S$; \\item $(a,b,c) \\in S$ if and only if $(c,b,a) \\notin S$; \\item $(a,b,c)$ and $(c,d,a)$ are both in $S$ if and only if $(b,c,d)$ and $(d,a,b)$ are both in $S$. \\end{enumerate} Prove that there exists a one-to-one function $g$ from $A$ to $\\R$ such that $g(a) < g(b) < g(c)$ implies $(a,b,c) \\in S$.",
"informal_solution": "None.",
"tags": [
"algebra"
Expand Down
4 changes: 2 additions & 2 deletions lean4/src/putnam_1996_a4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,15 @@ open BigOperators
open Function

/--
Let $S$ be the set of ordered triples $(a, b, c)$ of distinct elements of a finite set $A$. Suppose that \begin{enumerate} \item $(a,b,c) \in S$ if and only if $(b,c,a) \in S$; \item $(a,b,c) \in S$ if and only if $(c,b,a) \notin S$; \item $(a,b,c)$ and $(c,d,a)$ are both in $S$ if and only if $(b,c,d)$ and $(d,a,b)$ are both in $S$. \end{enumerate} Prove that there exists a one-to-one function $g$ from $A$ to $\R$ such that $g(a) < g(b) < g(c)$ implies $(a,b,c) \in S$.
Let $S$ be a set of ordered triples $(a, b, c)$ of distinct elements of a finite set $A$. Suppose that \begin{enumerate} \item $(a,b,c) \in S$ if and only if $(b,c,a) \in S$; \item $(a,b,c) \in S$ if and only if $(c,b,a) \notin S$; \item $(a,b,c)$ and $(c,d,a)$ are both in $S$ if and only if $(b,c,d)$ and $(d,a,b)$ are both in $S$. \end{enumerate} Prove that there exists a one-to-one function $g$ from $A$ to $\R$ such that $g(a) < g(b) < g(c)$ implies $(a,b,c) \in S$.
-/
theorem putnam_1996_a4
(A : Type*)
[Finite A]
(S : Set (A × A × A))
(hSdistinct : ∀ a b c : A, ⟨a, b, c⟩ ∈ S → a ≠ b ∧ b ≠ c ∧ a ≠ c)
(hS1 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨b, c, a⟩ ∈ S)
(hS2 : ∀ a b c : A, ⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ ∉ S)
(hS2 : ∀ a b c : A, a ≠ c → (⟨a, b, c⟩ ∈ S ↔ ⟨c, b, a⟩ ∉ S))
(hS3 : ∀ a b c d : A, (⟨a, b, c⟩ ∈ S ∧ ⟨c, d, a⟩ ∈ S) ↔ (⟨b,c,d⟩ ∈ S ∧ ⟨d,a,b⟩ ∈ S))
: ∃ g : A → ℝ, Injective g ∧ (∀ a b c : A, g a < g b ∧ g b < g c → ⟨a,b,c⟩ ∈ S) :=
sorry

0 comments on commit a99832e

Please sign in to comment.