Converting COCO annotation (CVAT) to annotation for YOLOv8-seg (instance segmentation) and YOLOv8-obb (oriented bounding box detection)
-
Updated
Nov 18, 2024 - Python
Converting COCO annotation (CVAT) to annotation for YOLOv8-seg (instance segmentation) and YOLOv8-obb (oriented bounding box detection)
A package to read and convert object detection datasets (COCO, YOLO, PascalVOC, LabelMe, CVAT, OpenImage, ...) and evaluate them with COCO and PascalVOC metrics.
Use this project to automatically annotate your dataset for free in CVAT
Репозиторий для обучения нейросетевых моделей по семантической сегментации + пример использования моделей на практике
This project aims to develope a Road-Segmentation model for Advanced Driver Assistance System (ADAS)
This reposity contains some serverless functionality for auto annotations
A parser for tracklet labels in KITTI Raw Format 1.0 created by the Computer Vision Annotation Tool (CVAT).
Documentation for deployment of cvat on Google Cloud (under development)
Connects Nuclio / CVAT to Lighting flash ML models
Código para entrenamiento de modelo para detección de objetos con algoritmo Yolov8 de Ultralytics
Yolo autolabel. It can export the dataset to CVAT format for editing or exporting to another format
Integrating Delphi and CVAT: Bandwidth-Efficient Interactive Labeling
CVAT SDK for JavaScript in the browser and Node.js
A Python program that can convert Segmentation mask 1.1 to Yolov8 format.
Use this if you have a set of annotations and images and want to import them into CVAT (could be for editing the bounding boxes or to export the dataset to another format).
Add a description, image, and links to the cvat topic page so that developers can more easily learn about it.
To associate your repository with the cvat topic, visit your repo's landing page and select "manage topics."