New Feature: Semantic Search (AI Embeddings)
Elevating Bookmark Management with AI-Driven Semantic Search
Features:
- semantic search using OpenAI embeddings (requires OpenAI API key)
- full-text search with semantic ranking (FTS5)
- fuzzy search
--fzf
(CTRL-O: copy to clipboard, CTRL-E: edit, CTRL-D: delete, Enter: open) - tags for classification
- can handle HTTP URLs, directories, files (e.g. Office, Images, ....)
- can execute URI strings as shell commands via protocol prefix: 'shell::'
URI-Example:
shell::vim +/"## SqlAlchemy" $HOME/document.md
- automatically enriches URLs with title and description from Web
- manages statistics about bookmark usage
bkmr search --fzf
is a great way to open bookmarks very fast.
bkmr --help
A Bookmark Manager and Launcher for the Terminal
Usage: bkmr [OPTIONS] [NAME] [COMMAND]
Commands:
search Searches Bookmarks
sem-search Semantic Search with OpenAI
open Open/launch bookmarks
add Add a bookmark
delete Delete bookmarks
update Update bookmarks
edit Edit bookmarks
show Show Bookmarks (list of ids, separated by comma, no blanks)
surprise Opens n random URLs
tags Tag for which related tags should be shown. No input: all tags are printed
create-db Initialize bookmark database
backfill Backfill embeddings for bookmarks
load-texts Load texts for semantic similarity search
help Print this message or the help of the given subcommand(s)
Arguments:
[NAME] Optional name to operate on
# FTS examples (https://www.sqlite.org/fts5.htm)
bkmr search '"https://securit" *'
bkmr search 'security NOT keycloak'
# FTS combined with tag filtering
bkmr search -t tag1,tag2 -n notag1 <searchquery>
# Search by any tag and sort by bookmark age ascending
bkmr search -T tag1,tag2 -O
# Give me the 10 oldest bookmarks
bkmr search -O --limit 10
# Adding URI to local files
bkmr add /home/user/presentation.pptx tag1,tag2 --title 'My super Presentation'
# Adding shell commands as URI
bkmr add "shell::vim +/'# SqlAlchemy' sql.md" shell,sql,doc --title 'sqlalchemy snippets'
# JSON dump of entire database
bkmr search --json
# Semantic Search based on OpenAI Embeddings
bkmr --openai sem-search "python security" # requires OPENAI_API_KEY
Tags must be separated by comma without blanks.
cargo install bkmr
- initialize the database:
bkmr create-db db_path
export "BKMR_DB_URL=db-path"
, location of created sqlite database must be known- add URLs
If you do not have Rust on your machine you can use: pip install bkmr
More configuration options can be found at documentation page.
A database migration will be performed on the first run of the new version. This will add two columns to the bookmarks table for the OpenAI embeddings. No destructive changes are made to the database.
bkmr
provides now full semantic search of generalized bookmarks using OpenAI's Embeddings.
You can find more information on the documentation page.
time twbm search 'zzz*' --np
0. zzzeek : Asynchronous Python and Databases [343]
https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/
async, knowhow, py
Found: 1
343
real 0m0.501s
user 0m0.268s
sys 0m0.070s
time bkmr search 'zzz*' --np
1. zzzeek : Asynchronous Python and Databases [343]
https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/
async knowhow py
real 0m0.027s
user 0m0.008s
sys 0m0.016s