Skip to content
forked from edusense/edusense

EduSense: Practical Classroom Sensing at Scale

License

Notifications You must be signed in to change notification settings

sud335/edusense

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EduSense: Practical Classroom Sensing at Scale

hero image

EduSense represents the first real-time, in-the-wild evaluated and practically-deployable classroom sensing system at scale that produces a plethora of theoretically-motivated visual and audio features correlated with effective instruction.

Our getting started is a good starting point if you are interested in building/developing/deploying EduSense. More information about the team can be found on the EduSense website.

News

  • Oct 2019 We open-source our EduSense code!
  • Sep 2019 We presented our paper titled "Edusense: Practical Classroom Sensing at Scale" at Ubicomp'19.

Features for Students and Instructors

features

  • Visual Features:
    • Body Segmentation, Keypoints and Inter-frame tracking:
      • Hand Raise Detection
      • Upper Body Pose Estimation
      • Sit vs Stand Detection
      • Synthetic Accelerometer
      • Classroom Topology
    • Facial Lanndmarks and Attributes:
      • Smile Detection
      • Mouth State Detection
      • Gaze Estimation
  • Audio Features:
    • Speech Detection:
      • Student vs Instructor Speech
      • Speech Act Delimation

Visualization Dashboard

viz dashboard

System Architecture

system architecture

Related Links

Citation

Karan Ahuja, Dohyun Kim, Franceska Xhakaj, Virag Varga, Anne Xie, Stanley Zhang, Jay Eric Townsend, Chris Harrison, Amy Ogan, and Yuvraj Agarwal. 2019. EduSense: Practical Classroom Sensing at Scale. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 3, Article 71 (September 2019), 26 pages. DOI: https://doi.org/10.1145/3351229

@article{Ahuja:2019:EPC:3361560.3351229,
 author = {Ahuja, Karan and Kim, Dohyun and Xhakaj, Franceska and Varga, Virag and Xie, Anne and Zhang, Stanley and Townsend, Jay Eric and Harrison, Chris and Ogan, Amy and Agarwal, Yuvraj},
 title = {EduSense: Practical Classroom Sensing at Scale},
 journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
 issue_date = {September 2019},
 volume = {3},
 number = {3},
 month = sep,
 year = {2019},
 issn = {2474-9567},
 pages = {71:1--71:26},
 articleno = {71},
 numpages = {26},
 url = {http://doi.acm.org/10.1145/3351229},
 doi = {10.1145/3351229},
 acmid = {3351229},
 publisher = {ACM},
 address = {New York, NY, USA},
 keywords = {Audio, Classroom, Computer Vision, Instructor, Machine Learning, Pedagogy, Sensing, Speech Detection, Teacher},
}

License

The source code in this directory and its subdirectories are all governed by BSD 3-Clause License unless otherwise noted in the source code. Once compiled or packaged, it is the user's reponsibility to ensure that any use of the result binary or image complies with any relevant licenses for all software packaged together.

About

EduSense: Practical Classroom Sensing at Scale

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 57.4%
  • Go 38.0%
  • Dockerfile 3.0%
  • Shell 1.6%