citation:
@article{DBLP:journals/corr/HuangNHVA13, author = {Furong Huang and Niranjan U. N and Mohammad Umar Hakeem and Prateek Verma and Animashree Anandkumar}, title = {Fast Detection of Overlapping Communities via Online Tensor Methods on GPUs}, journal = {CoRR}, year = {2013}, volume = {abs/1309.0787}, url = {http://arxiv.org/abs/1309.0787}, timestamp = {Sat, 25 Oct 2014 03:19:58 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/HuangNHVA13}, bibsource = {dblp computer science bibliography, http://dblp.org} }
================ Single node topic model learning and inference via method of moments using tensor decomposition. Alternating least squares with pre-processing (a whitening step consists of orthogonalization and dimensionality reduction) is implemented.
Synthetic Data Generator: TopicModeling/SyntheticDataGenerator.m
Data folder is: $(SolutionDir)\datasets\
Input Arguments:
//=========================================================================
// User Manual:
// (1) Data specs
InputArgument 1: NX is the training sample size
InputArgument 2: NX_test is the test sample size
InputArgument 3: NA is the vocabulary size
InputArgument 4: KHID is the number of topics you want to learn
InputArgument 5: alpha0 is the mixing parameter, usually set to < 1
InputArgument 6: DATATYPE denotes the index convention.
// -> DATATYPE == 1 assumes MATLAB index which starts from 1,DATATYPE ==0 assumes C++ index which starts from 0 .
// e.g. 10000 100 500 3 0.01 1
const char* FILE_GA = argv[7];
const char* FILE_GA_test = argv[8];
// (2) Input files
InputArgument 7: