├── Coursera/
│ ├── soham/
│ │ ├── Coursera Assignments/
│ │ └── Coursera Notes/
│ └── Aanchal/
│ ├── Course1/
│ ├── Course2/
│ └── Course4/
├── EDA/
│ ├── esc-50-explore.ipynb
│ └── esc-preprocess-and-eda.ipynb
├── UI/
│ ├── test/
│ ├── audio_ui.py
│ ├── audio_ui2.py
│ ├── labels.py
│ ├── model.py
│ ├── yamnet.onnx
│ └── yamnet_inference.py
├── mini-projects/
│ ├── Aanchal/
│ │ ├── Audio Classification UrbanSound8k.ipynb
│ │ ├── NN_from_scratch.ipynb
│ │ └── Transfer learning with ResNet-50 cifar10.ipynb
│ └── Soham/
│ ├── Audio Classification UrbanSound8k/
│ ├── Neural-Network-from-scratch/
│ └── Transfer-learning-cifar10/
├── resnets_and_efficientnets/
│ ├── esc-dataset.ipynb
│ ├── esc-model1_2024-08-20_18-11-09.pth
│ ├── esc-transfer-learn.ipynb
│ ├── esc-transfer-learning2.ipynb
│ └── esc-utils.ipynb
├── yamnet/
│ ├── esc-dataset.ipynb
│ ├── esc-dataset2.xpynb
│ ├── esc-model1_20/
│ ├── esc-utils.ipynb
│ ├── esc-utils3.xpynb
│ ├── esc-yamnet.ipynb
│ ├── escyamnetdataset.xpynb
│ ├── getyamnet.xpynb
│ ├── yamnet-load.xpynb
│ └── yamnet.ipynb
├── LICENSE
└── README.md
This project focuses on developing a robust audio classifier that processes user-provided audio files and accurately identifies the category or class to which the audio belongs.
This project seeks to create a cutting-edge audio classification system capable of sorting diverse audio inputs, including speech, music, and environmental sounds.
We used 2 approaches for this project, which are as follows,
- Convolutional Neural Networks (CNNs)
- Transfer learning (YAMNet, ResNet50, EfficientNET )
WhatsApp.Video.2024-10-18.at.23.40.22.1.mp4
- Hate Speech Detection in low-Resource Languages
- Audio based Security Systems
- Environmental Monitoring
Audio processing by Valerio Valerdo
Coursera course on Deep learning by Andrew Ng and Younes Bensouda Mourri
Pytorch playlist by Patrick Leober
Datasets used are as follows,
Special thanks to COC VJTI for ProjectX 2024
Special Thanks to our mentors Kshitij Shah and Param Thakkar who guided us throughout our project journey.