The jax-triton
repository contains integrations between JAX and Triton.
Documentation can be found here.
This is not an officially supported Google product.
The main function of interest is jax_triton.triton_call
for applying Triton
functions to JAX arrays, including inside jax.jit
-compiled functions. For
example, we can define a kernel from the Triton
tutorial:
import triton
import triton.language as tl
@triton.jit
def add_kernel(
x_ptr,
y_ptr,
length,
output_ptr,
block_size: tl.constexpr,
):
"""Adds two vectors."""
pid = tl.program_id(axis=0)
block_start = pid * block_size
offsets = block_start + tl.arange(0, block_size)
mask = offsets < length
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
Then we can apply it to JAX arrays using jax_triton.triton_call
:
import jax
import jax.numpy as jnp
import jax_triton as jt
def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray:
out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype)
block_size = 8
return jt.triton_call(
x,
y,
x.size,
kernel=add_kernel,
out_shape=out_shape,
grid=(x.size // block_size,),
block_size=block_size)
x_val = jnp.arange(8)
y_val = jnp.arange(8, 16)
print(add(x_val, y_val))
print(jax.jit(add)(x_val, y_val))
See the examples directory, especially fused_attention.py and the fused attention ipynb.
$ pip install jax-triton
You can either use a stable release of triton
or a nightly release.
Make sure you have a CUDA-compatible jax
installed. For example you could run:
$ pip install "jax[cuda12]"
To develop jax-triton
, you can clone the repo with:
$ git clone https://github.com/jax-ml/jax-triton.git
and do an editable install with:
$ cd jax-triton
$ pip install -e .
To run the jax-triton
tests, you'll need pytest
:
$ pip install pytest
$ pytest tests/