-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #211 from icbi-lab/maynard-example-data3
Add Maynard2020 example dataset
- Loading branch information
Showing
7 changed files
with
191 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -179,6 +179,7 @@ Datasets: `datasets` | |
|
||
wu2020 | ||
wu2020_3k | ||
maynard2020 | ||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# Always pair ipynb notebooks to md files | ||
default_jupytext_formats = "py:light" | ||
default_notebook_metadata_filter = "-kernelspec" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
# %env OPENBLAS_NUM_THREADS=16 | ||
# %env OMP_NUM_THREADS=16 | ||
# %env MKL_NUM_THREADS=16 | ||
# %env OMP_NUM_cpus=16 | ||
# %env MKL_NUM_cpus=16 | ||
# %env OPENBLAS_NUM_cpus=16 | ||
import sys | ||
|
||
sys.path.insert(0, "../../..") | ||
|
||
import scirpy as ir | ||
import scanpy as sc | ||
import pandas as pd | ||
import numpy as np | ||
from scipy.sparse import csr_matrix | ||
from pathlib import Path | ||
|
||
# The dataset has been downloaded from ENA and then processed using the Smart-seq2 Pipeline: | ||
# https://github.com/nf-core/smartseq2/ | ||
|
||
DATASET_DIR = Path("/data/datasets/Maynard_Bivona_2020_NSCLC/") | ||
|
||
# ### Read counts and TPMs | ||
|
||
count_mat = pd.read_csv( | ||
DATASET_DIR / "smartseq2_pipeline/resultCOUNT.txt", | ||
sep="\t", | ||
low_memory=False, | ||
index_col="Geneid", | ||
) | ||
|
||
tpm_mat = pd.read_csv( | ||
DATASET_DIR / "smartseq2_pipeline/resultTPM.txt", sep="\t", low_memory=False | ||
) | ||
|
||
# summarize to gene symbol for the ~300 duplicated symbols. | ||
tpm_mat_symbol = tpm_mat.drop("gene_id", axis="columns").groupby("gene_symbol").sum() | ||
|
||
# ### Read and sanitize metadata | ||
|
||
# + | ||
sample_info = pd.read_csv(DATASET_DIR / "scripts/sra_sample_info.csv", low_memory=False) | ||
cell_metadata = pd.read_csv( | ||
DATASET_DIR / "scripts/cell_metadata.csv", low_memory=False, index_col=0 | ||
) | ||
|
||
# combine metadata | ||
meta = sample_info.merge( | ||
cell_metadata, left_on="cell_ID", right_on="cell_id" | ||
).set_index("Run") | ||
# - | ||
|
||
meta = meta.drop( | ||
[ | ||
"Assay Type", | ||
"AvgSpotLen", | ||
"SRA Study", | ||
"ReleaseDate", | ||
"Bases", | ||
"disease", | ||
"Biomaterial_provider", | ||
"BioProject", | ||
"Isolate", | ||
"Sample Name", | ||
"BioSample", | ||
"BioSampleModel", | ||
"Bytes", | ||
"Center Name", | ||
"Consent", | ||
"DATASTORE filetype", | ||
"DATASTORE provider", | ||
"DATASTORE region", | ||
"Experiment", | ||
"Instrument", | ||
"LibraryLayout", | ||
"Library Name", | ||
"LibrarySelection", | ||
"cell_ID", | ||
"LibrarySource", | ||
"Organism", | ||
"Platform", | ||
"gender", | ||
"SAMPLE_TYPE", | ||
"TISSUE", | ||
], | ||
axis="columns", | ||
).rename( | ||
{ | ||
"Age": "age", | ||
"smokingHx": "smoking_status", | ||
"stage.at.dx": "stage_at_diagnosis", | ||
}, | ||
axis="columns", | ||
) | ||
|
||
meta.tail() | ||
|
||
# ### Find all cells for which we have both counts, TPM and annotation | ||
|
||
has_counts = set(count_mat.columns) | ||
has_tpm = set(tpm_mat.columns) | ||
has_meta = set(meta.index.values) | ||
|
||
cell_ids = np.array(list(has_counts & has_tpm & has_meta)) | ||
|
||
# ### Build adata | ||
|
||
var = ( | ||
pd.DataFrame(count_mat.index) | ||
.rename({"Geneid": "gene_symbol"}, axis="columns") | ||
.set_index("gene_symbol") | ||
.sort_index() | ||
) | ||
|
||
adata = sc.AnnData( | ||
X=csr_matrix(tpm_mat_symbol.loc[var.index, cell_ids].values.T), | ||
layers={"raw_counts": csr_matrix(count_mat.loc[var.index, cell_ids].values.T)}, | ||
var=var, | ||
obs=meta.loc[cell_ids, :], | ||
) | ||
|
||
adata_tcr = ir.io.read_tracer( | ||
"/data/datasets/Maynard_Bivona_2020_NSCLC/smartseq2_pipeline/TraCeR" | ||
) | ||
adata_bcr = ir.io.read_bracer( | ||
"/data/datasets/Maynard_Bivona_2020_NSCLC/smartseq2_pipeline/BraCeR/filtered_BCR_summary/changeodb.tab" | ||
) | ||
|
||
ir.pp.merge_with_ir(adata, adata_tcr) | ||
ir.pp.merge_with_ir(adata, adata_bcr) | ||
|
||
# Write out the dataset | ||
adata.write_h5ad("maynard2020.h5ad", compression="lzf") |