Skip to content

This is the source code of "Efficient training techniques for multi-agent reinforcement learning in combatant tasks".

Notifications You must be signed in to change notification settings

sanjinzhi/Multiagent-reinforcement-learning-algorithms-for-multiple-UAV-confrontation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multiagent reinforcement learning algorithms for multiple-UAV confrontation

This is the source code of "Efficient training techniques for multi-agent reinforcement learning in combatant tasks", we construct a multi-agent confrontation environment originated from a combatant scenario of multiple unman aerial vehicles. To begin with, we consider to solve this confrontation problem with two types of MARL algorithms. One is extended from the classical deep Q-network for multi-agent settings (MADQN). The other one is extended from the state-of-art multi-agent reinforcement method, multi-agent deep deterministic policy gradient (MADDPG). We compare the two methods for the initial confrontation scenario and find that MADDPG outperforms MADQN. Then with MADDPG as the baseline, we propose three efficient training techniques, i.e., scenario-transfer training, self-play training and rule-coupled training.

image

Rule-coupled red agents vs Random-move blue agents

image

Rule-coupled red agents vs Blue agents trained by self-play

About

This is the source code of "Efficient training techniques for multi-agent reinforcement learning in combatant tasks".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages