Skip to content

Point-Voxel Feature Set Abstraction for 3D Object Detection

License

Notifications You must be signed in to change notification settings

robin2002/PV-RCNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PV-RCNN

Pytorch implementation of PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection.

PV-RCNN

Features

  • Keypoints sampling
  • Voxel set abstraction (VSA)
  • Extended VSA
  • ROI grid pooling
  • SECOND backbone (SpMiddleFHD)
  • Predicted keypoint weighting
  • IOU-Net
  • Training code

Installation

Tested in environment:

  • CUDA 10.0
  • torch 1.0
  • Conda
  • Ubuntu 18.04
  • Python 3.6
  1. Installing Pointnet2:
git clone https://github.com/sshaoshuai/Pointnet2.PyTorch.git
cd Pointnet2.PyTorch && python setup.py install
export PYTHONPATH=$PYTHONPATH:/path/to/Pointnet2.PyTorch/
  1. Installing spconv:
git clone https://github.com/traveller59/spconv.git --recursive
cd spconv && git checkout 7342772
python setup.py bdist_wheel
cd ./dist && pip install *.whl
  1. Installing pvrcnn (this package):
python setup.py develop

About

Point-Voxel Feature Set Abstraction for 3D Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%