Pytorch implementation of PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection.
- Keypoints sampling
- Voxel set abstraction (VSA)
- Extended VSA
- ROI grid pooling
- SECOND backbone (SpMiddleFHD)
- Predicted keypoint weighting
- IOU-Net
- Training code
Tested in environment:
- CUDA 10.0
- torch 1.0
- Conda
- Ubuntu 18.04
- Python 3.6
- Installing Pointnet2:
git clone https://github.com/sshaoshuai/Pointnet2.PyTorch.git
cd Pointnet2.PyTorch && python setup.py install
export PYTHONPATH=$PYTHONPATH:/path/to/Pointnet2.PyTorch/
- Installing spconv:
git clone https://github.com/traveller59/spconv.git --recursive
cd spconv && git checkout 7342772
python setup.py bdist_wheel
cd ./dist && pip install *.whl
- Installing pvrcnn (this package):
python setup.py develop