Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement V2P net #82

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 95 additions & 0 deletions lipnet/model3_V2P.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
from keras.layers.convolutional import Conv3D, ZeroPadding3D
from keras.layers.pooling import MaxPooling3D
from keras.layers.core import Dense, Activation, Flatten
from keras.layers.wrappers import Bidirectional, TimeDistributed
from keras.layers.recurrent import LSTM
from keras_contrib.layers import GroupNormalization
from keras.layers import Input
from keras.models import Model
from lipnet.core.layers import CTC
from keras import backend as K


class LipNet(object):
def __init__(self, img_c=3, img_w=100, img_h=50, frames_n=75, absolute_max_string_len=32, output_size=28):
self.img_c = img_c
self.img_w = img_w
self.img_h = img_h
self.frames_n = frames_n
self.absolute_max_string_len = absolute_max_string_len
self.output_size = output_size
self.build()

def build(self):
if K.image_data_format() == 'channels_first':
input_shape = (self.img_c, self.frames_n, self.img_w, self.img_h)
else:
input_shape = (self.frames_n, self.img_w, self.img_h, self.img_c)

self.input_data = Input(name='the_input', shape=input_shape, dtype='float32')

self.zero1 = ZeroPadding3D(padding=(1, 0, 0), name='zero1')(self.input_data)
self.conv1 = Conv3D(64, (3, 3, 3), strides=(1, 2, 2), kernel_initializer='he_normal', name='conv1')(self.zero1)
self.gn1 = GroupNormalization(name='gn1', groups=32)(self.conv1)
self.actv1 = Activation('relu', name='actv1')(self.gn1)
self.maxp1 = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max1')(self.actv1)

self.zero2 = ZeroPadding3D(padding=(1, 0, 0), name='zero2')(self.maxp1)
self.conv2 = Conv3D(128, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv2')(self.zero2)
self.gn2 = GroupNormalization(name='gn2', groups=32)(self.conv2)
self.actv2 = Activation('relu', name='actv2')(self.gn2)
self.maxp2 = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max2')(self.actv2)

self.zero3 = ZeroPadding3D(padding=(1, 0, 0), name='zero3')(self.maxp2)
self.conv3 = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv3')(self.zero3)
self.gn3 = GroupNormalization(name='gn3', groups=32)(self.conv3)
self.actv3 = Activation('relu', name='actv3')(self.gn3)
self.maxp3 = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max3')(self.actv3)

self.zero4 = ZeroPadding3D(padding=(1, 0, 0), name='zero4')(self.maxp3)
self.conv4 = Conv3D(512, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv4')(self.zero4)
self.gn4 = GroupNormalization(name='gn4', groups=32)(self.conv4)
self.actv4 = Activation('relu', name='actv4')(self.gn4)

self.zero5 = ZeroPadding3D(padding=(1, 0, 0), name='zero5')(self.actv4)
self.conv5 = Conv3D(512, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv5')(self.zero5)
self.gn5 = GroupNormalization(name='gn5', groups=32)(self.conv5)
self.actv5 = Activation('relu', name='actv5')(self.gn5)
self.maxp5 = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 1, 1), name='max5')(self.actv5)

self.resh1 = TimeDistributed(Flatten())(self.maxp5)

self.lstm_1 = Bidirectional(LSTM(768, return_sequences=True, kernel_initializer='Orthogonal', name='lstm1'), merge_mode='concat')(self.resh1)
self.lstm_1_gn = GroupNormalization(name='lstm_1_gn', groups=32)(self.lstm_1)
self.lstm_2 = Bidirectional(LSTM(768, return_sequences=True, kernel_initializer='Orthogonal', name='lstm2'), merge_mode='concat')(self.lstm_1_gn)
self.lstm_2_gn = GroupNormalization(name='lstm_2_gn', groups=32)(self.lstm_2)
self.lstm_3 = Bidirectional(LSTM(768, return_sequences=True, kernel_initializer='Orthogonal', name='lstm3'), merge_mode='concat')(self.lstm_2_gn)
self.lstm_3_gn = GroupNormalization(name='lstm_3_gn', groups=32)(self.lstm_3)

# transforms RNN output to character activations:
self.dense1 = Dense(768, kernel_initializer='he_normal', name='dense1')(self.lstm_3_gn)
self.gn6 = GroupNormalization(name='gn6', groups=32)(self.dense1)
self.actv6 = Activation('relu', name='actv6')(self.gn6)
self.dense2 = Dense(self.output_size, kernel_initializer='he_normal', name='dense2')(self.actv6)


self.y_pred = Activation('softmax', name='softmax')(self.dense2)

self.labels = Input(name='the_labels', shape=[self.absolute_max_string_len], dtype='float32')
self.input_length = Input(name='input_length', shape=[1], dtype='int64')
self.label_length = Input(name='label_length', shape=[1], dtype='int64')

self.loss_out = CTC('ctc', [self.y_pred, self.labels, self.input_length, self.label_length])

self.model = Model(inputs=[self.input_data, self.labels, self.input_length, self.label_length], outputs=self.loss_out)

def summary(self):
Model(inputs=self.input_data, outputs=self.y_pred).summary()

def predict(self, input_gnh):
return self.test_function([input_gnh, 0])[0] # the first 0 indicates test

@property
def test_function(self):
# captures output of softmax so we can decode the output during visualization
return K.function([self.input_data, K.learning_phase()], [self.y_pred, K.learning_phase()])