Skip to content

Commit

Permalink
Add: LMA017 - Part 14
Browse files Browse the repository at this point in the history
  • Loading branch information
rezaarezvan committed Sep 27, 2023
1 parent e81515f commit 88ae029
Show file tree
Hide file tree
Showing 8 changed files with 317 additions and 10 deletions.
14 changes: 13 additions & 1 deletion index.xml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,19 @@
<description>Recent content on rezvan</description>
<generator>Hugo -- gohugo.io</generator>
<language>en-us</language>
<lastBuildDate>Tue, 26 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/index.xml" rel="self" type="application/rss+xml" />
<lastBuildDate>Wed, 27 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>Mathematical analysis in several variables: Part 14 - Curves</title>
<link>https://rezvan.xyz/school/LMA017_14/</link>
<pubDate>Wed, 27 Sep 2023 00:00:00 +0000</pubDate>

<guid>https://rezvan.xyz/school/LMA017_14/</guid>
<description>Introduction In this part we&amp;rsquo;ll cover curves and how we can parameterize curve.
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$
We call this the parameterization of the curve. Where $t$ is the parameter.</description>
</item>

<item>
<title>Mathematical analysis in several variables: Part 13 - The jacobian matrix, cylindrical coordinates and spherical coordinates</title>
<link>https://rezvan.xyz/school/LMA017_13/</link>
Expand Down
264 changes: 264 additions & 0 deletions school/LMA017_14/index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,264 @@
<!DOCTYPE html>
<html><head lang="en">
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge"><title>rezvan | Mathematical analysis in several variables: Part 14 - Curves</title><link rel="icon" type="image/png" href=images/icon.png /><meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description"
content="Introduction In this part we&rsquo;ll cover curves and how we can parameterize curve.
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$
We call this the parameterization of the curve. Where $t$ is the parameter." />
<meta property="og:image" content="https://raw.githubusercontent.com/rezaarezvan/rezvan.xyz/main/images/icon.png" />
<meta property="og:title" content="Mathematical analysis in several variables: Part 14 - Curves" />
<meta property="og:description" content="Introduction In this part we&rsquo;ll cover curves and how we can parameterize curve.
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$
We call this the parameterization of the curve. Where $t$ is the parameter." />
<meta property="og:type" content="article" />
<meta property="og:url" content="https://rezvan.xyz/school/LMA017_14/" /><meta property="article:section" content="school" />
<meta property="article:published_time" content="2023-09-27T00:00:00+00:00" />
<meta property="article:modified_time" content="2023-09-27T00:00:00+00:00" />
<meta name="twitter:card" content="summary"/>
<meta name="twitter:title" content="Mathematical analysis in several variables: Part 14 - Curves"/>
<meta name="twitter:description" content="Introduction In this part we&rsquo;ll cover curves and how we can parameterize curve.
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$
We call this the parameterization of the curve. Where $t$ is the parameter."/>
<script src="https://cdn.jsdelivr.net/npm/feather-icons/dist/feather.min.js"></script>
<link href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@1,500&display=swap" rel="stylesheet">
<link href="https://fonts.googleapis.com/css2?family=Fira+Sans&display=swap" rel="stylesheet">
<link href="https://fonts.googleapis.com/css?family=Roboto+Mono" rel="stylesheet">


<link rel="stylesheet" type="text/css" media="screen" href="https://rezvan.xyz/css/main.ba569590e8c731bede38299aded75c13e50d4852941d3a5e4c6a6af2ebd4edc9.css" />
<link id="darkModeStyle" rel="stylesheet" type="text/css" href="https://rezvan.xyz/css/dark.32a857cf41536a621cbe7a4c130af2ca2a8a07e56700231118a06897aaefb2d5.css" disabled />




<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>


<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$','$'], ['\\(','\\)']],
displayMath: [['$$','$$'], ['\[','\]']],
processEscapes: true,
processEnvironments: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],
TeX: { equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js"] }
}
});
</script>




<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js"
onload="renderMathInElement(document.body);"></script>


<script>
document.addEventListener("DOMContentLoaded", function () {
renderMathInElement(document.body, {
delimiters: [
{left: "$$", right: "$$", display: true},
{left: "$", right: "$", display: false}
]
});
});
</script>



</head>
<body>
<div class="content"><header>
<div class="main">
<a href="https://rezvan.xyz/">rezvan</a>
</div>
<nav>

<a href="/">home</a>

<a href="/about">about</a>

<a href="/contact">contact</a>

<a href="/cv">cv</a>

<a href="/school">school</a>

<a href="/tags">tags</a>

| <span id="dark-mode-toggle" onclick="toggleTheme()"></span>
<script src="https://rezvan.xyz/js/themetoggle.js"></script>

</nav>
</header>

<main>
<article>
<div class="title">
<h1 class="title">Mathematical analysis in several variables: Part 14 - Curves</h1>
<div class="meta">Posted on Sep 27, 2023</div>
</div>


<section class="body">
<h3 id="introduction">Introduction</h3>
<p>In this part we&rsquo;ll cover curves and how we can parameterize curve.</p>
<h3 id="definition">Definition</h3>
<p>Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.</p>
<p>Equivalently, we can say that:
$$
\vec{r}(t) = \langle f(t), g(t), h(t) \rangle
$$</p>
<p>We call this the <strong>parameterization</strong> of the curve. Where $t$ is the parameter.</p>
<h3 id="example">Example</h3>
<p>Given the function $y = x$. In the interval, $0 \leq t \leq 1$.</p>
<p>We can parameterize and say:
$$
\vec{r}(t) = \langle t, t \rangle \ | \ 0 \leq t \leq 1
$$</p>
<p>But we could also say that:
$$
\vec{r}(t) = \langle t^2, t^2 \rangle \ | \ 0 \leq t \leq 1
$$</p>
<p>So, there isn&rsquo;t necessarily a unique parameterization for a function.</p>
<p>We can also change the &ldquo;direction&rdquo;:
$$
\vec{r}(t) = \langle 1 - t, 1 - t \rangle \ | \ 0 \leq t \leq 1
$$</p>
<p>Let&rsquo;s try for a more complex function. Given the unit circle, $x^2 + y^2 = 1$.
$$
\vec{r}(t) = \langle cos(t), sin(t) \rangle \ | \ 0 \leq t \leq 2\pi
$$</p>
<p>In general:
$$
\vec{r}(t) = \langle t, f(t) \rangle \ | \ a \leq t \leq b
$$</p>
<h3 id="definition-1">Definition</h3>
<p>If a curve, $C$, is given by a parameterization:
$$
\vec{r}(t) = \langle f(t), g(t), h(t)
$$</p>
<p>Then:
$$
\vec{r}\ ^\prime(t) = \langle f^\prime(t), g^\prime(t), h^\prime(t)
$$</p>
<p>is <strong>the tangent vector</strong>.</p>
<h3 id="definition-2">Definition</h3>
<p>$$
\vec{T}(t) = \dfrac{\vec{r}\ ^\prime(t)}{|\vec{r}\ ^\prime(t)|}
$$</p>
<p>is <strong>the unit tangent vector</strong>.</p>
<h3 id="examples">Examples</h3>
<p>For the curve $\vec{r}(t) = \sqrt(t) \vec{i} + (2 - t)\vec{j}$.</p>
<p>Find $\vec{T}(t)$ at $t = 1$.</p>
<p>Let&rsquo;s rewrite $\vec{r}(t)$ in usual notation:
$$
\vec{r}(t) = \langle \sqrt{t}, 2 - t \rangle
$$</p>
<p>$$
\vec{r}\ ^\prime (t) = \langle \dfrac{1}{2\sqrt{t}}, -1 \rangle
$$</p>
<p>$$
\vec{r}\ ^\prime (1) = \langle \dfrac{1}{2}, -1 \rangle
$$</p>
<p>$$
|\vec{r}\ ^\prime (1)| = \ldots = \dfrac{\sqrt{5}}{2}
$$</p>
<p>$$
\vec{T}(1) = \dfrac{\vec{r}\ ^\prime(1)}{|\vec{r}\ ^\prime(1)|}
$$</p>
<p>$$
\vec{T}(1) = \dfrac{\langle \dfrac{1}{2}, -1 \rangle}{\dfrac{\sqrt{5}}{2}}
$$</p>
<p>$$
\vec{T}(1) = \langle \dfrac{1}{\sqrt{5}}, - \dfrac{2}{\sqrt{5}} \rangle
$$</p>
<h3 id="parameterization-over-line">Parameterization over line</h3>
<p>Given a line that passes through the point $(x_0, y_0, z_0)$, with a direction of the vector, $\vec{v} = \langle a, b, c \rangle$.</p>
<p>If we want to parameterize this line, we can choose another point that this vector passes through as:
$$
\vec{r}(t) = \vec{r}(t_0) + t\vec{v}
$$</p>
<p>$$
(x(t), y(t), z(t)) = (x_0, y_0, z_0) + t(a, b, c)
$$</p>
<p>This means that:
$$
x(t) = x_0 + ta
$$</p>
<p>$$
y(t) = y_0 + tb
$$</p>
<p>$$
z(t) = z_0 + tc
$$</p>
<h3 id="example-1">Example</h3>
<p>Find the parameterization equation to the tangent line to the helix, $x = 2cos(t), y = sin(t), z = t$. At point $(0, 1, \dfrac{\pi}{2})$.</p>
<p>From this we easily see that $t = \dfrac{\pi}{2}$.</p>
<p>The tangent line passes through $\vec{T}(\dfrac{\pi}{2})$.</p>
<p>Let&rsquo;s find this.</p>
<p>$$
\vec{r}(t) = \langle 2 cos(t), sin(t), t \rangle
$$</p>
<p>$$
\vec{r}\ ^\prime(t) = \langle -2 sin(t), cos(t), 1 \rangle
$$</p>
<p>$$
\vec{r}\ ^\prime(\dfrac{\pi}{2}) = \langle -2, 0, 1 \rangle
$$</p>
<p>$$
|\vec{r}\ ^\prime(\dfrac{\pi}{2})| = \sqrt{(-2)^2 + 0^2 + 1^2} = \sqrt{5}
$$</p>
<p>$$
\vec{T}(\dfrac{\pi}{2}) = \langle - \dfrac{2}{\sqrt{5}}, 0, \dfrac{1}{\sqrt{5}} \rangle
$$</p>
<p>Now let&rsquo;s set this into our equation:
$$
x(t) = 0 + t \cdot -\dfrac{2}{\sqrt{5}} = \boxed{-\dfrac{2t}{\sqrt{5}}}
$$</p>
<p>$$
y(t) = 1 + t \cdot 0 = \boxed{1}
$$</p>
<p>$$
z(t) = \dfrac{\pi}{2} + t \dfrac{1}{\sqrt{5}} = \boxed{\dfrac{\pi}{2} + \dfrac{t}{\sqrt{5}}}
$$</p>

</section>

<div class="post-tags">


<nav class="nav tags">
<ul class="tags">

<li><a href="/%20/tags/Mathematical-analysis-in-several-variables">Mathematical analysis in several variables</a></li>

</ul>
</nav>


</div>
</article>
</main>
<footer>
<div style="display:flex"><a class="soc" href="https://github.com/rezaarezvan" rel="me" title="GitHub"><i data-feather="github"></i></a>
<a class="border"></a><a class="soc" href="https://twitter.com/rzvan__/" rel="me" title="Twitter"><i data-feather="twitter"></i></a>
<a class="border"></a></div><p class="footer_msg">memento mori</p></footer>


<script>
feather.replace()
</script></div>
</body>

</html>
2 changes: 2 additions & 0 deletions school/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,8 @@ <h1 class="page-title">All articles</h1>


<ul class="posts"><li class="post">
<a href="/school/LMA017_14/">Mathematical analysis in several variables: Part 14 - Curves</a> <span class="meta">Sep 27, 2023</span>
</li><li class="post">
<a href="/school/LMA017_13/">Mathematical analysis in several variables: Part 13 - The jacobian matrix, cylindrical coordinates and spherical coordinates</a> <span class="meta">Sep 26, 2023</span>
</li><li class="post">
<a href="/school/SSY081_8/">Transforms, signals and systems: Part 8 - Signal reconstruction</a> <span class="meta">Sep 25, 2023</span>
Expand Down
14 changes: 13 additions & 1 deletion school/index.xml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,19 @@
<description>Recent content in Schools on rezvan</description>
<generator>Hugo -- gohugo.io</generator>
<language>en-us</language>
<lastBuildDate>Tue, 26 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/school/index.xml" rel="self" type="application/rss+xml" />
<lastBuildDate>Wed, 27 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/school/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>Mathematical analysis in several variables: Part 14 - Curves</title>
<link>https://rezvan.xyz/school/LMA017_14/</link>
<pubDate>Wed, 27 Sep 2023 00:00:00 +0000</pubDate>

<guid>https://rezvan.xyz/school/LMA017_14/</guid>
<description>Introduction In this part we&amp;rsquo;ll cover curves and how we can parameterize curve.
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$
We call this the parameterization of the curve. Where $t$ is the parameter.</description>
</item>

<item>
<title>Mathematical analysis in several variables: Part 13 - The jacobian matrix, cylindrical coordinates and spherical coordinates</title>
<link>https://rezvan.xyz/school/LMA017_13/</link>
Expand Down
13 changes: 8 additions & 5 deletions sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -3,18 +3,21 @@
xmlns:xhtml="http://www.w3.org/1999/xhtml">
<url>
<loc>https://rezvan.xyz/tags/Mathematical-analysis-in-several-variables/</loc>
<lastmod>2023-09-26T00:00:00+00:00</lastmod>
<lastmod>2023-09-27T00:00:00+00:00</lastmod>
</url><url>
<loc>https://rezvan.xyz/school/LMA017_13/</loc>
<lastmod>2023-09-26T00:00:00+00:00</lastmod>
<loc>https://rezvan.xyz/school/LMA017_14/</loc>
<lastmod>2023-09-27T00:00:00+00:00</lastmod>
</url><url>
<loc>https://rezvan.xyz/</loc>
<lastmod>2023-09-26T00:00:00+00:00</lastmod>
<lastmod>2023-09-27T00:00:00+00:00</lastmod>
</url><url>
<loc>https://rezvan.xyz/school/</loc>
<lastmod>2023-09-26T00:00:00+00:00</lastmod>
<lastmod>2023-09-27T00:00:00+00:00</lastmod>
</url><url>
<loc>https://rezvan.xyz/tags/</loc>
<lastmod>2023-09-27T00:00:00+00:00</lastmod>
</url><url>
<loc>https://rezvan.xyz/school/LMA017_13/</loc>
<lastmod>2023-09-26T00:00:00+00:00</lastmod>
</url><url>
<loc>https://rezvan.xyz/tags/Transforms-signals-and-systems/</loc>
Expand Down
2 changes: 2 additions & 0 deletions tags/Mathematical-analysis-in-several-variables/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,8 @@ <h1>Entries tagged - "Mathematical analysis in several variables"</h1>


<ul class="posts"><li class="post">
<a href="/school/LMA017_14/">Mathematical analysis in several variables: Part 14 - Curves</a> <span class="meta">Sep 27, 2023</span>
</li><li class="post">
<a href="/school/LMA017_13/">Mathematical analysis in several variables: Part 13 - The jacobian matrix, cylindrical coordinates and spherical coordinates</a> <span class="meta">Sep 26, 2023</span>
</li><li class="post">
<a href="/school/LMA017_12/">Mathematical analysis in several variables: Part 12 - Change of variables &amp; Polar coordinates</a> <span class="meta">Sep 22, 2023</span>
Expand Down
14 changes: 13 additions & 1 deletion tags/Mathematical-analysis-in-several-variables/index.xml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,19 @@
<description>Recent content in Mathematical analysis in several variables on rezvan</description>
<generator>Hugo -- gohugo.io</generator>
<language>en-us</language>
<lastBuildDate>Tue, 26 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/tags/Mathematical-analysis-in-several-variables/index.xml" rel="self" type="application/rss+xml" />
<lastBuildDate>Wed, 27 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/tags/Mathematical-analysis-in-several-variables/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>Mathematical analysis in several variables: Part 14 - Curves</title>
<link>https://rezvan.xyz/school/LMA017_14/</link>
<pubDate>Wed, 27 Sep 2023 00:00:00 +0000</pubDate>

<guid>https://rezvan.xyz/school/LMA017_14/</guid>
<description>Introduction In this part we&amp;rsquo;ll cover curves and how we can parameterize curve.
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$
We call this the parameterization of the curve. Where $t$ is the parameter.</description>
</item>

<item>
<title>Mathematical analysis in several variables: Part 13 - The jacobian matrix, cylindrical coordinates and spherical coordinates</title>
<link>https://rezvan.xyz/school/LMA017_13/</link>
Expand Down
4 changes: 2 additions & 2 deletions tags/index.xml
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,11 @@
<description>Recent content in Tags on rezvan</description>
<generator>Hugo -- gohugo.io</generator>
<language>en-us</language>
<lastBuildDate>Tue, 26 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/tags/index.xml" rel="self" type="application/rss+xml" />
<lastBuildDate>Wed, 27 Sep 2023 00:00:00 +0000</lastBuildDate><atom:link href="https://rezvan.xyz/tags/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>Mathematical analysis in several variables</title>
<link>https://rezvan.xyz/tags/Mathematical-analysis-in-several-variables/</link>
<pubDate>Tue, 26 Sep 2023 00:00:00 +0000</pubDate>
<pubDate>Wed, 27 Sep 2023 00:00:00 +0000</pubDate>

<guid>https://rezvan.xyz/tags/Mathematical-analysis-in-several-variables/</guid>
<description></description>
Expand Down

0 comments on commit 88ae029

Please sign in to comment.