-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e81515f
commit 88ae029
Showing
8 changed files
with
317 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
<!DOCTYPE html> | ||
<html><head lang="en"> | ||
<meta charset="utf-8" /> | ||
<meta http-equiv="X-UA-Compatible" content="IE=edge"><title>rezvan | Mathematical analysis in several variables: Part 14 - Curves</title><link rel="icon" type="image/png" href=images/icon.png /><meta name="viewport" content="width=device-width, initial-scale=1"> | ||
<meta name="description" | ||
content="Introduction In this part we’ll cover curves and how we can parameterize curve. | ||
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve. | ||
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$ | ||
We call this the parameterization of the curve. Where $t$ is the parameter." /> | ||
<meta property="og:image" content="https://raw.githubusercontent.com/rezaarezvan/rezvan.xyz/main/images/icon.png" /> | ||
<meta property="og:title" content="Mathematical analysis in several variables: Part 14 - Curves" /> | ||
<meta property="og:description" content="Introduction In this part we’ll cover curves and how we can parameterize curve. | ||
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve. | ||
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$ | ||
We call this the parameterization of the curve. Where $t$ is the parameter." /> | ||
<meta property="og:type" content="article" /> | ||
<meta property="og:url" content="https://rezvan.xyz/school/LMA017_14/" /><meta property="article:section" content="school" /> | ||
<meta property="article:published_time" content="2023-09-27T00:00:00+00:00" /> | ||
<meta property="article:modified_time" content="2023-09-27T00:00:00+00:00" /> | ||
<meta name="twitter:card" content="summary"/> | ||
<meta name="twitter:title" content="Mathematical analysis in several variables: Part 14 - Curves"/> | ||
<meta name="twitter:description" content="Introduction In this part we’ll cover curves and how we can parameterize curve. | ||
Definition Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve. | ||
Equivalently, we can say that: $$ \vec{r}(t) = \langle f(t), g(t), h(t) \rangle $$ | ||
We call this the parameterization of the curve. Where $t$ is the parameter."/> | ||
<script src="https://cdn.jsdelivr.net/npm/feather-icons/dist/feather.min.js"></script> | ||
<link href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@1,500&display=swap" rel="stylesheet"> | ||
<link href="https://fonts.googleapis.com/css2?family=Fira+Sans&display=swap" rel="stylesheet"> | ||
<link href="https://fonts.googleapis.com/css?family=Roboto+Mono" rel="stylesheet"> | ||
|
||
|
||
<link rel="stylesheet" type="text/css" media="screen" href="https://rezvan.xyz/css/main.ba569590e8c731bede38299aded75c13e50d4852941d3a5e4c6a6af2ebd4edc9.css" /> | ||
<link id="darkModeStyle" rel="stylesheet" type="text/css" href="https://rezvan.xyz/css/dark.32a857cf41536a621cbe7a4c130af2ca2a8a07e56700231118a06897aaefb2d5.css" disabled /> | ||
|
||
|
||
|
||
|
||
<script type="text/javascript" | ||
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> | ||
</script> | ||
|
||
|
||
<script type="text/x-mathjax-config"> | ||
MathJax.Hub.Config({ | ||
tex2jax: { | ||
inlineMath: [['$','$'], ['\\(','\\)']], | ||
displayMath: [['$$','$$'], ['\[','\]']], | ||
processEscapes: true, | ||
processEnvironments: true, | ||
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'], | ||
TeX: { equationNumbers: { autoNumber: "AMS" }, | ||
extensions: ["AMSmath.js", "AMSsymbols.js"] } | ||
} | ||
}); | ||
</script> | ||
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css"> | ||
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js"></script> | ||
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" | ||
onload="renderMathInElement(document.body);"></script> | ||
|
||
|
||
<script> | ||
document.addEventListener("DOMContentLoaded", function () { | ||
renderMathInElement(document.body, { | ||
delimiters: [ | ||
{left: "$$", right: "$$", display: true}, | ||
{left: "$", right: "$", display: false} | ||
] | ||
}); | ||
}); | ||
</script> | ||
|
||
|
||
|
||
</head> | ||
<body> | ||
<div class="content"><header> | ||
<div class="main"> | ||
<a href="https://rezvan.xyz/">rezvan</a> | ||
</div> | ||
<nav> | ||
|
||
<a href="/">home</a> | ||
|
||
<a href="/about">about</a> | ||
|
||
<a href="/contact">contact</a> | ||
|
||
<a href="/cv">cv</a> | ||
|
||
<a href="/school">school</a> | ||
|
||
<a href="/tags">tags</a> | ||
|
||
| <span id="dark-mode-toggle" onclick="toggleTheme()"></span> | ||
<script src="https://rezvan.xyz/js/themetoggle.js"></script> | ||
|
||
</nav> | ||
</header> | ||
|
||
<main> | ||
<article> | ||
<div class="title"> | ||
<h1 class="title">Mathematical analysis in several variables: Part 14 - Curves</h1> | ||
<div class="meta">Posted on Sep 27, 2023</div> | ||
</div> | ||
|
||
|
||
<section class="body"> | ||
<h3 id="introduction">Introduction</h3> | ||
<p>In this part we’ll cover curves and how we can parameterize curve.</p> | ||
<h3 id="definition">Definition</h3> | ||
<p>Let, $f(t)$, $g(t)$ and $h(t)$ be continuous functions on some interval, $I$. The connection of points $(x, y, z)$, where $x = f(t)$, $y = g(t)$ and $z = h(t)$, is a curve.</p> | ||
<p>Equivalently, we can say that: | ||
$$ | ||
\vec{r}(t) = \langle f(t), g(t), h(t) \rangle | ||
$$</p> | ||
<p>We call this the <strong>parameterization</strong> of the curve. Where $t$ is the parameter.</p> | ||
<h3 id="example">Example</h3> | ||
<p>Given the function $y = x$. In the interval, $0 \leq t \leq 1$.</p> | ||
<p>We can parameterize and say: | ||
$$ | ||
\vec{r}(t) = \langle t, t \rangle \ | \ 0 \leq t \leq 1 | ||
$$</p> | ||
<p>But we could also say that: | ||
$$ | ||
\vec{r}(t) = \langle t^2, t^2 \rangle \ | \ 0 \leq t \leq 1 | ||
$$</p> | ||
<p>So, there isn’t necessarily a unique parameterization for a function.</p> | ||
<p>We can also change the “direction”: | ||
$$ | ||
\vec{r}(t) = \langle 1 - t, 1 - t \rangle \ | \ 0 \leq t \leq 1 | ||
$$</p> | ||
<p>Let’s try for a more complex function. Given the unit circle, $x^2 + y^2 = 1$. | ||
$$ | ||
\vec{r}(t) = \langle cos(t), sin(t) \rangle \ | \ 0 \leq t \leq 2\pi | ||
$$</p> | ||
<p>In general: | ||
$$ | ||
\vec{r}(t) = \langle t, f(t) \rangle \ | \ a \leq t \leq b | ||
$$</p> | ||
<h3 id="definition-1">Definition</h3> | ||
<p>If a curve, $C$, is given by a parameterization: | ||
$$ | ||
\vec{r}(t) = \langle f(t), g(t), h(t) | ||
$$</p> | ||
<p>Then: | ||
$$ | ||
\vec{r}\ ^\prime(t) = \langle f^\prime(t), g^\prime(t), h^\prime(t) | ||
$$</p> | ||
<p>is <strong>the tangent vector</strong>.</p> | ||
<h3 id="definition-2">Definition</h3> | ||
<p>$$ | ||
\vec{T}(t) = \dfrac{\vec{r}\ ^\prime(t)}{|\vec{r}\ ^\prime(t)|} | ||
$$</p> | ||
<p>is <strong>the unit tangent vector</strong>.</p> | ||
<h3 id="examples">Examples</h3> | ||
<p>For the curve $\vec{r}(t) = \sqrt(t) \vec{i} + (2 - t)\vec{j}$.</p> | ||
<p>Find $\vec{T}(t)$ at $t = 1$.</p> | ||
<p>Let’s rewrite $\vec{r}(t)$ in usual notation: | ||
$$ | ||
\vec{r}(t) = \langle \sqrt{t}, 2 - t \rangle | ||
$$</p> | ||
<p>$$ | ||
\vec{r}\ ^\prime (t) = \langle \dfrac{1}{2\sqrt{t}}, -1 \rangle | ||
$$</p> | ||
<p>$$ | ||
\vec{r}\ ^\prime (1) = \langle \dfrac{1}{2}, -1 \rangle | ||
$$</p> | ||
<p>$$ | ||
|\vec{r}\ ^\prime (1)| = \ldots = \dfrac{\sqrt{5}}{2} | ||
$$</p> | ||
<p>$$ | ||
\vec{T}(1) = \dfrac{\vec{r}\ ^\prime(1)}{|\vec{r}\ ^\prime(1)|} | ||
$$</p> | ||
<p>$$ | ||
\vec{T}(1) = \dfrac{\langle \dfrac{1}{2}, -1 \rangle}{\dfrac{\sqrt{5}}{2}} | ||
$$</p> | ||
<p>$$ | ||
\vec{T}(1) = \langle \dfrac{1}{\sqrt{5}}, - \dfrac{2}{\sqrt{5}} \rangle | ||
$$</p> | ||
<h3 id="parameterization-over-line">Parameterization over line</h3> | ||
<p>Given a line that passes through the point $(x_0, y_0, z_0)$, with a direction of the vector, $\vec{v} = \langle a, b, c \rangle$.</p> | ||
<p>If we want to parameterize this line, we can choose another point that this vector passes through as: | ||
$$ | ||
\vec{r}(t) = \vec{r}(t_0) + t\vec{v} | ||
$$</p> | ||
<p>$$ | ||
(x(t), y(t), z(t)) = (x_0, y_0, z_0) + t(a, b, c) | ||
$$</p> | ||
<p>This means that: | ||
$$ | ||
x(t) = x_0 + ta | ||
$$</p> | ||
<p>$$ | ||
y(t) = y_0 + tb | ||
$$</p> | ||
<p>$$ | ||
z(t) = z_0 + tc | ||
$$</p> | ||
<h3 id="example-1">Example</h3> | ||
<p>Find the parameterization equation to the tangent line to the helix, $x = 2cos(t), y = sin(t), z = t$. At point $(0, 1, \dfrac{\pi}{2})$.</p> | ||
<p>From this we easily see that $t = \dfrac{\pi}{2}$.</p> | ||
<p>The tangent line passes through $\vec{T}(\dfrac{\pi}{2})$.</p> | ||
<p>Let’s find this.</p> | ||
<p>$$ | ||
\vec{r}(t) = \langle 2 cos(t), sin(t), t \rangle | ||
$$</p> | ||
<p>$$ | ||
\vec{r}\ ^\prime(t) = \langle -2 sin(t), cos(t), 1 \rangle | ||
$$</p> | ||
<p>$$ | ||
\vec{r}\ ^\prime(\dfrac{\pi}{2}) = \langle -2, 0, 1 \rangle | ||
$$</p> | ||
<p>$$ | ||
|\vec{r}\ ^\prime(\dfrac{\pi}{2})| = \sqrt{(-2)^2 + 0^2 + 1^2} = \sqrt{5} | ||
$$</p> | ||
<p>$$ | ||
\vec{T}(\dfrac{\pi}{2}) = \langle - \dfrac{2}{\sqrt{5}}, 0, \dfrac{1}{\sqrt{5}} \rangle | ||
$$</p> | ||
<p>Now let’s set this into our equation: | ||
$$ | ||
x(t) = 0 + t \cdot -\dfrac{2}{\sqrt{5}} = \boxed{-\dfrac{2t}{\sqrt{5}}} | ||
$$</p> | ||
<p>$$ | ||
y(t) = 1 + t \cdot 0 = \boxed{1} | ||
$$</p> | ||
<p>$$ | ||
z(t) = \dfrac{\pi}{2} + t \dfrac{1}{\sqrt{5}} = \boxed{\dfrac{\pi}{2} + \dfrac{t}{\sqrt{5}}} | ||
$$</p> | ||
|
||
</section> | ||
|
||
<div class="post-tags"> | ||
|
||
|
||
<nav class="nav tags"> | ||
<ul class="tags"> | ||
|
||
<li><a href="/%20/tags/Mathematical-analysis-in-several-variables">Mathematical analysis in several variables</a></li> | ||
|
||
</ul> | ||
</nav> | ||
|
||
|
||
</div> | ||
</article> | ||
</main> | ||
<footer> | ||
<div style="display:flex"><a class="soc" href="https://github.com/rezaarezvan" rel="me" title="GitHub"><i data-feather="github"></i></a> | ||
<a class="border"></a><a class="soc" href="https://twitter.com/rzvan__/" rel="me" title="Twitter"><i data-feather="twitter"></i></a> | ||
<a class="border"></a></div><p class="footer_msg">memento mori</p></footer> | ||
|
||
|
||
<script> | ||
feather.replace() | ||
</script></div> | ||
</body> | ||
|
||
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters