*Work In Progress: Some major code refactoring is underway and this branch is unstable a.t.m *.
Unsupervised representation learning with CapsNet based Generative Adversarial Networks
Arxiv paper link here
Coalesces Wassertein Distance algorithm based generative adversarial networks with deep convolutinal network based discriminator replaced by CapsNet architecture.
- Python > 3.6
- PyTorch
- TorchVision
- TorchNet
- TQDM
- Visdom [optional]
** For training, an NVIDIA TITAN XP GPU was used. Using CUDA with GPU is strongly recommended. CPU is supported but speed of training will be very slow.
- MNIST
- CIFAR-10
- SmallNORB
Running MNIST
Pass in the gpu device number for e.g. 0
$ python --dataset mnist --nc 1 --imageSize 32 --dataroot ./data --cuda {GPU_DEVICE_NUMBER} --workers 4
Architecture
High level architecture:
Running SmallNORB
SmallNORB is an ideal dataset for testing the efficacy of Capsule networks over traditional CNN based GANs.
Pass in the gpu device number for e.g. 0
$ python --dataset smallnorb --nc 1 --imageSize 64 --dataroot ./data/smallnorb/ --cuda {GPU_DEVICE_NUMBER} --workers 4
SmallNORB Results
Reconstructed smallNORB cars and planes:
Running CIFAR10
Pass in the gpu device number for e.g. 0
$ python3 main.py --nc 3 --dataset cifar10 --dataroot ./data --cuda {GPU_DEVICE_NUMBER} --workers 4 --niter [NUM_EPOCHS]
Utilizes FAIR's visdom as visulization tool. If you'd like to visualize the test and train results, run with visualize
args.
$ sudo python3 -m visdom.server &
$ python3 main.py --visualize --cuda
To run with MLP as G or D, run:
$ python3 main.py --dataset cifar10 --dataroot ./data --cuda {device_num} --experiment {Name} --mlp_G --ngf 512
Using CUDA
Pass in the gpu device number for e.g. 0
$ python main.py --cuda {GPU_DEVICE_NUMBER}
Enable Visualization
Start the server (probably in a screen or tmux):
python -m visdom.server -port 8097
Run with --visualize
parameter
$ python main.py --cude {GPU_DEVICE_NUMBER} --visualize
Using DCGAN (and variants - BN, no-BN) as baseline against the CapsNet architecture.
Please send an email to raeidsaqur[at]cs[dot]toronto[dot]edu for questions, PRs etc.
*** Note: Improved ReadMe is in the works!