Skip to content

hybrid classical-quantum transfer learning for cardiomegaly detection on chest x-rays

License

Notifications You must be signed in to change notification settings

quantum-ai-for-cardiac-imaging/cardiomegaly-chest-x-ray

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hybrid Classical-Quantum Transfer Learning for Cardiomegaly Detection on Chest X-Rays

Open Access Article

J. Imaging 2023, 9(7), 128; https://doi.org/10.3390/jimaging9070128

Dataset

CSV files are available in the subfolders of the chexpert-corrected folder, organized to comply with the codes.

These subfolders must be populated by the corresponding images to download from: https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2 after login and agreeing to the Stanford University Dataset Research Use Agreement.

Code

Author: @poig

Notebook Version:

init_freezer.ipynb

no freezer.ipynb

init_freezer - P6qubit.ipynb

init_freezer - P8qubit.ipynb

init_freezer - P10qubit.ipynb

ten-fold-cross-validation-cc-densenet-121.ipynb

Command Prompt Version:

command prompt/trainer.py : the main program here you will execute in command prompt

command prompt/requirements.txt : requirement package install with conda create --name <env> --file <this file>

command prompt/command : example how to start training, require modify address before execute

Saliency maps

Authors: @poig & @pdc-quantum

Saliency maps obtained using GradCAM++ for the test dataset are collected in folder gradcam_final.

  • Subfolder gcnn is for the classical-classical model.
  • Subfolder gpnn is for the PennyLane-based classical-quantum model.
  • Subfolder gqnn is for the Qiskit-based classical-quantum model.

The notebooks that generated these collections are:

saliency-maps-test-set-classical-model.ipynb

saliency-maps-test-set-6-qubit-qiskit-model.ipynb

saliency-maps-test-set-6-qubit-pennylane-model.ipynb

How to run the project locally

After cloning the repository to your local system, create a virtual environment, and activate it.

conda create --name <env_name> python=3.8

On Windows:

.\<env_name>\Scripts\activate

On Mac/Linux:

source ./<env_name>/bin/activate

Then install the required packages using the specified requirements.txt file

conda install -n <env_name> requirements.txt

Run trainer.py file

command prompt/trainer.py

An example on how to start training, the address must be modified before execution

command prompt/command

About

hybrid classical-quantum transfer learning for cardiomegaly detection on chest x-rays

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •