Skip to content

Latest commit

 

History

History
255 lines (200 loc) · 11.5 KB

README.md

File metadata and controls

255 lines (200 loc) · 11.5 KB

GeneticSharp

Build

Build status

Code quality

Coverage Status FxCop DupFinder

Release

License Nuget Stack Overflow

GeneticSharp is a fast, extensible, multi-platform and multithreading C# Genetic Algorithm library that simplifies the development of applications using Genetic Algorithms (GAs).

Can be used in any kind of .NET apps, like ASP .NET MVC, Web Forms, Windows Forms, GTK# and Unity3D applications.


Projects, papers and tutorials using GeneticSharp

Features

Add your own fitness evaluation, implementing IFitness interface.

  • AutoConfig
  • Bitmap equality
  • Equality equation
  • Equation solver
  • Function builder

  • Ghostwriter
  • TSP (Travelling Salesman Problem)

Runner app (GTK#) with visual samples:

TSP (Travelling Salesman Problem)

Function optimization

Bitmap equality

Multi-platform

  • Mono support.
  • Fully tested on Windows and MacOSX.

Code quality

  • 100% unit test code coverage.
  • FxCop validated.
  • Code duplicated verification.
  • Good (and well used) design patterns.
  • 100% code documentation.

Setup

PM> Install-Package GeneticSharp

Usage

Creating your own fitness evaluation

public class MyProblemFitness : IFitness
{  
	public double Evaluate (IChromosome chromosome)
	{
		// Evaluate the fitness of chromosome.
	}
}

Creating your own chromosome

public class MyProblemChromosome : ChromosomeBase
{
	// Change the argument value passed to base construtor to change the length 
	// of your chromosome.
	public MyProblemChromosome() : base(10) 
	{
		CreateGenes();
	}

	public override Gene GenerateGene (int geneIndex)
	{
		// Generate a gene base on my problem chromosome representation.
	}

	public override IChromosome CreateNew ()
	{
		return new MyProblemChromosome();
	}
}

Running your GA

var selection = new EliteSelection();
var crossover = new OrderedCrossover();
var mutation = new ReverseSequenceMutation();
var fitness = new MyProblemFitness();
var chromosome = new MyProblemChromosome();
var population = new Population (50, 70, chromosome);

var ga = new GeneticAlgorithm(population, fitness, selection, crossover, mutation);
ga.Termination = new GenerationNumberTermination(100);

Console.WriteLine("GA running...");
ga.Start();

Console.WriteLine("Best solution found has {0} fitness.", ga.BestChromosome.Fitness);

Roadmap

  • Unity3d game sample (WIP)
  • Improve Runner.GtkApp
    • Add new problems/classic samples
      • Checkers
      • Time series
      • Knapsack problem
  • Create the wiki
  • Add new selections
    • Reward-based
  • Add new crossovers
    • Voting recombination
    • Alternating-position (AP)
    • Sequential Constructive (SCX)
    • Shuffle crossover
    • Precedence Preservative Crossover (PPX)
  • Add new mutations
    • Non-Uniform
    • Boundary
    • Gaussian
  • Add new terminations
    • Fitness convergence
    • Population convergence
    • Chromosome convergence
  • MonoTouch Runner app (sample)
  • Parallel populations (islands)

FAQ

Having troubles?


How to improve it?

Create a fork of GeneticSharp.

Did you change it? Submit a pull request.

License

Licensed under the The MIT License (MIT). In others words, you can use this library for developement any kind of software: open source, commercial, proprietary and alien.