Generate the status badge on Github using Github Actions #231
Workflow file for this run
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: CI_GPU | |
on: | |
push: | |
branches: | |
- main | |
pull_request: | |
branches: | |
- main | |
jobs: | |
# Temporarily disable this test since there is no server including multiple GPUs. | |
# unittest_multi_gpu: | |
# runs-on: 4-core-ubuntu-gpu-t4 | |
# steps: | |
# - name: Checkout | |
# uses: actions/checkout@v2 | |
# - name: Display Python version | |
# run: python3 -c "import sys; print(sys.version)" | |
# - name: Set up Python | |
# uses: actions/setup-python@v2 | |
# with: | |
# python-version: '3.x' | |
# - name: Install dependencies | |
# run: | | |
# python -m pip install --upgrade pip | |
# ./scripts/install_via_pip.sh -c | |
# - name: Run multi-GPU unit tests | |
# run: | | |
# python3 -m unittest opacus.tests.multigpu_gradcheck.GradientComputationTest.test_gradient_correct | |
integrationtest_py39_torch_release_cuda: | |
runs-on: 4-core-ubuntu-gpu-t4 | |
steps: | |
- name: Checkout | |
uses: actions/checkout@v2 | |
- name: Set up Python | |
uses: actions/setup-python@v2 | |
with: | |
python-version: '3.9' | |
- name: Install dependencies | |
run: | | |
python3 -m pip install --upgrade pip | |
pip install pytest coverage coveralls | |
./scripts/install_via_pip.sh -c | |
# Cuda dependency has already been installed when installing PyTorch, so no need to re-install it. | |
# https://discuss.pytorch.org/t/should-i-install-the-extra-cudatoolkit-and-cudnn/194528 | |
# Cuda installation guide: https://medium.com/@milistu/how-to-install-cuda-cudnn-7e4a00ae4f44 | |
# - name: Install CUDA toolkit and cuDNN | |
# run: | | |
# sudo apt-get update | |
# sudo apt-get install -y --no-install-recommends \ | |
# cuda-toolkit-11-1 \ | |
# libcudnn8=8.1.1.33-1+cuda11.1 \ | |
# libcudnn8-dev=8.1.1.33-1+cuda11.1 | |
- name: Run MNIST integration test (CUDA) | |
run: | | |
nvidia-smi | |
mkdir -p runs/mnist/data | |
mkdir -p runs/mnist/test-reports | |
python -c "import torch; exit(0) if torch.cuda.is_available() else exit(1)" | |
python examples/mnist.py --lr 0.25 --sigma 0.7 -c 1.5 --batch-size 64 --epochs 1 --data-root runs/mnist/data --n-runs 1 --device cuda | |
python -c "import torch; accuracy = torch.load('run_results_mnist_0.25_0.7_1.5_64_1.pt'); exit(0) if (accuracy[0]>0.78 and accuracy[0]<0.95) else exit(1)" | |
- name: Store MNIST test results | |
uses: actions/upload-artifact@v4 | |
with: | |
name: mnist-gpu-reports | |
path: runs/mnist/test-reports | |
- name: Run CIFAR10 integration test (CUDA) | |
run: | | |
mkdir -p runs/cifar10/data | |
mkdir -p runs/cifar10/logs | |
mkdir -p runs/cifar10/test-reports | |
pip install tensorboard | |
python examples/cifar10.py --lr 0.1 --sigma 1.5 -c 10 --batch-size 2000 --epochs 10 --data-root runs/cifar10/data --log-dir runs/cifar10/logs --device cuda | |
python -c "import torch; model = torch.load('model_best.pth.tar'); exit(0) if (model['best_acc1']>0.4 and model['best_acc1']<0.49) else exit(1)" | |
python examples/cifar10.py --lr 0.1 --sigma 1.5 -c 10 --batch-size 2000 --epochs 10 --data-root runs/cifar10/data --log-dir runs/cifar10/logs --device cuda --grad_sample_mode no_op | |
python -c "import torch; model = torch.load('model_best.pth.tar'); exit(0) if (model['best_acc1']>0.4 and model['best_acc1']<0.49) else exit(1)" | |
- name: Store CIFAR10 test results | |
uses: actions/upload-artifact@v4 | |
with: | |
name: cifar10-gpu-reports | |
path: runs/cifar10/test-reports | |
# To save resouces, there is no need to run all the tests. | |
# - name: Run IMDb integration test (CUDA) | |
# run: | | |
# mkdir -p runs/imdb/data | |
# mkdir -p runs/imdb/test-reports | |
# pip install --user datasets transformers | |
# python examples/imdb.py --lr 0.02 --sigma 1.0 -c 1.0 --batch-size 64 --max-sequence-length 256 --epochs 2 --data-root runs/imdb/data --device cuda | |
# python -c "import torch; accuracy = torch.load('run_results_imdb_classification.pt'); exit(0) if (accuracy>0.54 and accuracy<0.66) else exit(1)" | |
# - name: Store IMDb test results | |
# uses: actions/upload-artifact@v4 | |
# with: | |
# name: imdb-gpu-reports | |
# path: runs/imdb/test-reports | |
# - name: Run charlstm integration test (CUDA) | |
# run: | | |
# mkdir -p runs/charlstm/data | |
# wget https://download.pytorch.org/tutorial/data.zip -O runs/charlstm/data/data.zip | |
# unzip runs/charlstm/data/data.zip -d runs/charlstm/data | |
# rm runs/charlstm/data/data.zip | |
# mkdir -p runs/charlstm/test-reports | |
# pip install scikit-learn | |
# python examples/char-lstm-classification.py --epochs=20 --learning-rate=2.0 --hidden-size=128 --delta=8e-5 --batch-size 400 --n-layers=1 --sigma=1.0 --max-per-sample-grad-norm=1.5 --data-root="runs/charlstm/data/data/names/" --device cuda --test-every 5 | |
# python -c "import torch; accuracy = torch.load('run_results_chr_lstm_classification.pt'); exit(0) if (accuracy>0.60 and accuracy<0.80) else exit(1)" | |
# - name: Store test results | |
# uses: actions/upload-artifact@v4 | |
# with: | |
# name: charlstm-gpu-reports | |
# path: runs/charlstm/test-reports | |
# We will have new benchmarks for Ghost Clipping. | |
# micro_benchmarks_py39_torch_release_cuda: | |
# runs-on: ubuntu-latest | |
# needs: [integrationtest_py39_torch_release_cuda] | |
# container: | |
# # https://hub.docker.com/r/nvidia/cuda | |
# image: nvidia/cuda:12.3.1-base-ubuntu22.04 | |
# options: --gpus all | |
# env: | |
# TZ: 'UTC' | |
# steps: | |
# - name: Checkout | |
# uses: actions/checkout@v2 | |
# - name: Set up Python | |
# uses: actions/setup-python@v2 | |
# with: | |
# python-version: 3.9 | |
# - name: Install dependencies | |
# run: | | |
# python -m pip install --upgrade pip | |
# pip install pytest coverage coveralls | |
# ./scripts/install_via_pip.sh | |
# - name: Install CUDA toolkit and cuDNN | |
# run: | | |
# apt-get update | |
# apt-get install -y --no-install-recommends \ | |
# cuda-toolkit-11-1 \ | |
# libcudnn8=8.1.1.33-1+cuda11.1 \ | |
# libcudnn8-dev=8.1.1.33-1+cuda11.1 | |
# - name: Run benchmark integration tests (CUDA) | |
# run: | | |
# mkdir -p benchmarks/results/raw | |
# python benchmarks/run_benchmarks.py --batch_size 16 --layers "groupnorm instancenorm layernorm" --config_file ./benchmarks/config.json --root ./benchmarks/results/raw/ --cont | |
# IFS=$' ';layers=("groupnorm" "instancenorm" "layernorm"); rm -rf /tmp/report_layers; mkdir -p /tmp/report_layers; IFS=$'\n'; files=`( echo "${layers[*]}" ) | sed 's/.*/.\/benchmarks\/results\/raw\/&*/'` | |
# cp -v ${files[@]} /tmp/report_layers | |
# report_id=`IFS=$'-'; echo "${layers[*]}"` | |
# python benchmarks/generate_report.py --path-to-results /tmp/report_layers --save-path benchmarks/results/report-${report_id}.csv --format csv | |
# python benchmarks/generate_report.py --path-to-results /tmp/report_layers --save-path benchmarks/results/report-${report_id}.pkl --format pkl | |
# python benchmarks/check_threshold.py --report-path "./benchmarks/results/report-"$report_id".pkl" --metric runtime --threshold 3.0 --column "hooks/baseline" | |
# python benchmarks/check_threshold.py --report-path "./benchmarks/results/report-"$report_id".pkl" --metric memory --threshold 1.6 --column "hooks/baseline" | |
# - name: Store artifacts | |
# uses: actions/upload-artifact@v2 | |
# with: | |
# name: benchmarks-reports | |
# path: benchmarks/results/ |