This is the official Pytorch implementation of CAT and L-CAT.
For CPU usage:
conda create --name lcat python=3.9.7 --no-default-packages
conda activate lcat
pip install torch==1.13.1 torchvision==0.14.1
pip install pyg-lib torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.13.0+cpu.html --force-reinstall
For GPU usage:
conda create --name lcat_gpu python=3.9.7 --no-default-packages
conda activate l
pip3 install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
pip install pyg-lib torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.13.0+cu116.html
Then install the following dependencies:
pip install pytest==7.2.0
pip install pytest-helpers-namespace
To use the L-CAT in your own project, see the tests
folder for examples.
In particular, check out tests/test_lcat_pyg.py
to learn how to use LCAT with GCN, GCN2, and PNA with the PyTorch Geometric implementation.
This project uses pytest for testing. To run the tests, you can use the following command:
pytest tests
This will run all the tests in the tests/
directory. You can also run individual test files using the following command:
pytest tests/test_lcat_pyg.py
This project is licensed under the MIT License.
If you use CAT or L-CAT, consider citing our paper
@inproceedings{javaloy2023learnable,
title={Learnable Graph Convolutional Attention Networks},
author={Adri{\'a}n Javaloy and Pablo Sanchez Martin and Amit Levi and Isabel Valera},
booktitle={International Conference on Learning Representations (ICLR) },
year={2023},
url={https://openreview.net/forum?id=WsUMeHPo-2}
}
For further information: [email protected]