Skip to content

princeton-vl/MetaQNL

Repository files navigation

Learning Symbolic Rules for Reasoning in Quasi-Natural Language

Example proof

Code for the paper:

Learning Symbolic Rules for Reasoning in Quasi-Natural Language
Transactions on Machine Learning Research (TMLR), 2023
Kaiyu Yang and Jia Deng

@article{yang2023metaqnl,
  title={Learning Symbolic Rules for Reasoning in Quasi-Natural Language},
  author={Yang, Kaiyu and Deng, Jia},
  journal={Transactions on Machine Learning Research (TMLR)},
  year={2023},
}

Requirements

  1. 1.3 <= Julia < nightly.
  2. Install the Julia packages in Project.toml: julia --project=. -e 'import Pkg; Pkg.instantiate()'.
  3. Install the Open-WBO MAX-SAT solver. This step is not necessary if you want to use only Z3. But some of our experiments use OpenWBO since it can be faster in certain cases.

Documentation

julia --project=. --color=yes docs/make.jl will build the documentation at docs/build/.

Training

Use scripts/train.jl for training. Datasets will be downloaded automatically. Run julia --project=. scripts/train.jl --help for command line options.

Experiments on MiniSCAN

julia --project=. scripts/train.jl --dataset MiniSCAN --weight-candidate 0.4 --weight-existing 0.3 --maxsat-solver Z3

Experiments on SCAN

The simple split:

julia --project=. scripts/train.jl --dataset SCAN --split simple --num-train-examples 400 --weight-candidate 0.15 --weight-existing 0.15 --maxsat-solver Z3

The length split:

julia --project=. scripts/train.jl --dataset SCAN --split length --num-train-examples 400 --weight-candidate 0.15 --weight-existing 0.15 --maxsat-solver Z3

The addprim_jump split:

julia --project=. scripts/train.jl --dataset SCAN --split addprim_jump --num-train-examples 400 --weight-candidate 0.15 --weight-existing 0.15 --maxsat-solver Z3

The addprim_turn_left split:

julia --project=. scripts/train.jl --dataset SCAN --split addprim_turn_left --num-train-examples 400 --weight-candidate 0.15 --weight-existing 0.15 --maxsat-solver Z3

Experiments on RuleTaker

julia --project=. scripts/train.jl --dataset RuleTaker --split depth-1 --num-train-examples 10000 --weight-candidate 0.5 --weight-existing 0.5 --maxsat-solver Z3
julia --project=. scripts/train.jl --dataset RuleTaker --split depth-3 --num-train-examples 10000 --weight-candidate 0.25 --weight-existing 0.25 --maxsat-solver Z3 --lambda-provable 1.28 --lambda-unprovable 1.28

Experiments on SIGMORPHON 2018:

julia --project=. scripts/train.jl --dataset Sigmorphon --lang spanish --split hard --copy 0 --weight-candidate 1.0 --weight-existing 1.0 --num-epochs 8

About

Learning Symbolic Rules for Reasoning in Quasi-Natural Language: https://arxiv.org/abs/2111.12038

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages