Skip to content

ottermata/dedup_me

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI version

dedup_me

dedup_me is a simple library for concurrent in-flight deduplication of functions. This can be useful for e.g. API calls or DB access. Instead of querying the same data multiple times, this library allows you to query once and share the result.

Note: This library does not cache results. After the result is returned, new consumers will call the function(API, DB, ...) again.

Installation

pip install dedup-me

Usage

AsyncIO

import asyncio
import random

from dedup_me import async_dedup

# @async_dedup('static-key')  # if the arguments don't matter, you can use a static key
@async_dedup(key = lambda x: f'dynamic-key-{x}')  # or pass in a key function that accepts all arguments
async def expensive_function(x: int) -> int:
    print('expensive function called')
    await asyncio.sleep(x)
    return random.randint(0, 10)


async def main() -> None:
    # call the function 10 times
    # this should only print 'expensive function called' once
    results = await asyncio.gather(
        *(
            expensive_function(1)
            for _ in range(10)
        )
    )
    print(results)
    # all results should be the same
    results_list = list(results)
    assert results_list == [results_list[0]] * 10

Alternatively, without the decorator:

import asyncio
import random

from dedup_me import AsyncDedup


async def expensive_function() -> int:
    print('expensive function called')
    await asyncio.sleep(1)
    return random.randint(0, 10)


async def main() -> None:
    dedup = AsyncDedup()
    await asyncio.gather(
        *(
            # functions are grouped by the key, choose something that represents the function and its arguments
            # the second argument must be a function without arguments that returns an awaitable
            dedup.run('some-key', lambda: expensive_function())
            for _ in range(10)
        )
    )

Threads

For threading just use the threading_dedup decorator or ThreadingDedup.

from time import sleep
from dedup_me import threading_dedup, ThreadingDedup


@threading_dedup('key')
def expensive_function() -> None:
    sleep(1)

expensive_function()

# or
dedup = ThreadingDedup()
dedup.run('key', lambda: sleep(1))

Forcing a new execution

You can enforce a new execution by passing force_new = True to the run function. When using the decorator, you can add a callable that will receive all arguments and returns a boolean.

About

Python library to deduplication function calls.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages