-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
226 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
""" | ||
================================= | ||
pydda.io (pydda.io) | ||
================================= | ||
.. currentmodule:: pydda.io | ||
This module handles the input/ouput of PyDDA. | ||
.. autosummary:: | ||
:toctree: generated/ | ||
read_grid | ||
read_from_pyart_grid | ||
""" | ||
|
||
from .read_grid import read_grid, read_from_pyart_grid |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
import xarray as xr | ||
import xradar as xd | ||
import numpy as np | ||
|
||
from glob import glob | ||
from datatree import DataTree | ||
from pyart.core.transforms import cartesian_to_geographic | ||
|
||
from ..retrieval.angles import add_azimuth_as_field, add_elevation_as_field | ||
|
||
|
||
def read_grid(file_name, level_name="parent", **kwargs): | ||
""" | ||
Opens a Cf-compliant netCDF grid object produced by a utility like | ||
PyART or RadxGrid. This will add all variables PyDDA needs | ||
from these grids to create a PyDDA Grid (based on the xarray :func:`xr.Dataset`). | ||
This will open the grid as a parent node of a DataTree structure. | ||
Parameters | ||
---------- | ||
file_name: str or list | ||
The name of the file to open. If a list of files is provided, the grids | ||
are opened as a parent node with all grid datasets concatenated together. | ||
level_name: str | ||
The name of the nest level to put in the datatree. The specified grids will | ||
Returns | ||
------- | ||
root: DataTree | ||
The dataset with the list of grids as the parent node. | ||
""" | ||
|
||
root = xr.open_dataset(file_name, decode_times=False) | ||
|
||
# Find first grid field name | ||
root.attrs["first_grid_name"] = "" | ||
for vars in list(root.variables.keys()): | ||
if root[vars].dims == ("time", "z", "y", "x"): | ||
root.attrs["first_grid_name"] = vars | ||
break | ||
if root.attrs["first_grid_name"] == "": | ||
raise IOError("NetCDF file does not contain any valid radar grid fields!") | ||
|
||
root["point_x"] = xr.DataArray(_point_data_factory(root, "x"), dims=("z", "y", "x")) | ||
root.attrs["units"] = root["x"].units | ||
root.attrs["long_name"] = "Point x location" | ||
root["point_y"] = xr.DataArray(_point_data_factory(root, "y"), dims=("z", "y", "x")) | ||
root.attrs["units"] = root["y"].units | ||
root.attrs["long_name"] = "Point y location" | ||
root["point_z"] = xr.DataArray(_point_data_factory(root, "z"), dims=("z", "y", "x")) | ||
root.attrs["units"] = root["z"].units | ||
root.attrs["long_name"] = "Point z location" | ||
root["point_altitude"] = xr.DataArray( | ||
_point_altitude_data_factory(root), dims=("z", "y", "x") | ||
) | ||
root.attrs["units"] = root["z"].units | ||
root.attrs["long_name"] = "Point altitude" | ||
lon = _point_lon_lat_data_factory(root, 0) | ||
lat = _point_lon_lat_data_factory(root, 1) | ||
root["point_longitude"] = xr.DataArray(lon, dims=("z", "y", "x")) | ||
root["point_longitude"].attrs["units"] = root["radar_longitude"].attrs["units"] | ||
root["point_longitude"].attrs["long_name"] = "Point longitude" | ||
root["point_latitude"] = xr.DataArray(lat, dims=("z", "y", "x")) | ||
root["point_latitude"].attrs["units"] = root["radar_latitude"].attrs["units"] | ||
root["point_latitude"].attrs["long_name"] = "Point latitude" | ||
add_azimuth_as_field(root) | ||
add_elevation_as_field(root) | ||
|
||
return root | ||
|
||
|
||
def read_from_pyart_grid(Grid): | ||
""" | ||
Converts a Py-ART Grid to a PyDDA Dataset with the necessary variables | ||
Parameters | ||
---------- | ||
Grid: Py-ART Grid | ||
The Py-ART Grid to convert to a PyDDA Grid | ||
Returns | ||
------- | ||
new_grid: PyDDA Dataset | ||
The xarray Dataset with the additional parameters PyDDA needs | ||
""" | ||
new_grid = Grid | ||
radar_latitude = Grid.radar_latitude | ||
radar_longitude = Grid.radar_longitude | ||
radar_altitude = Grid.radar_altitude | ||
origin_latitude = Grid.origin_latitude | ||
origin_longitude = Grid.origin_longitude | ||
origin_altitude = Grid.origin_altitude | ||
|
||
if len(list(Grid.fields.keys())) > 0: | ||
first_grid_name = list(Grid.fields.keys())[0] | ||
else: | ||
first_grid_name = "" | ||
projection = Grid.get_projparams() | ||
new_grid = new_grid.to_xarray() | ||
|
||
new_grid["projection"] = xr.DataArray(1, dims=(), attrs=projection) | ||
|
||
if "lat_0" in projection.keys(): | ||
new_grid["projection"].attrs["_include_lon_0_lat_0"] = "true" | ||
else: | ||
new_grid["projection"].attrs["_include_lon_0_lat_0"] = "false" | ||
|
||
if "units" not in new_grid["time"].attrs.keys(): | ||
new_grid["time"].attrs["units"] = ( | ||
"seconds since %s" | ||
% new_grid["time"].dt.strftime("%Y-%m-%dT%H:%M:%SZ").values[0] | ||
) | ||
new_grid.attrs["first_grid_name"] = first_grid_name | ||
x = radar_latitude.pop("data").squeeze() | ||
new_grid["radar_latitude"] = xr.DataArray( | ||
np.atleast_1d(x), dims=("nradar"), attrs=radar_latitude | ||
) | ||
x = radar_longitude.pop("data").squeeze() | ||
new_grid["radar_longitude"] = xr.DataArray( | ||
np.atleast_1d(x), dims=("nradar"), attrs=radar_longitude | ||
) | ||
x = radar_altitude.pop("data").squeeze() | ||
new_grid["radar_altitude"] = xr.DataArray( | ||
np.atleast_1d(x), dims=("nradar"), attrs=radar_altitude | ||
) | ||
x = origin_latitude.pop("data").squeeze() | ||
new_grid["origin_latitude"] = xr.DataArray( | ||
np.atleast_1d(x), dims=("nradar"), attrs=origin_latitude | ||
) | ||
x = origin_longitude.pop("data").squeeze() | ||
new_grid["origin_longitude"] = xr.DataArray( | ||
np.atleast_1d(x), dims=("nradar"), attrs=origin_longitude | ||
) | ||
x = origin_altitude.pop("data").squeeze() | ||
new_grid["origin_altitude"] = xr.DataArray( | ||
np.atleast_1d(x), dims=("nradar"), attrs=origin_altitude | ||
) | ||
new_grid["point_x"] = xr.DataArray( | ||
_point_data_factory(new_grid, "x"), dims=("z", "y", "x") | ||
) | ||
new_grid.attrs["units"] = new_grid["x"].units | ||
new_grid.attrs["long_name"] = "Point x location" | ||
new_grid["point_y"] = xr.DataArray( | ||
_point_data_factory(new_grid, "y"), dims=("z", "y", "x") | ||
) | ||
new_grid.attrs["units"] = new_grid["y"].units | ||
new_grid.attrs["long_name"] = "Point y location" | ||
new_grid["point_z"] = xr.DataArray( | ||
_point_data_factory(new_grid, "z"), dims=("z", "y", "x") | ||
) | ||
new_grid.attrs["units"] = new_grid["z"].units | ||
new_grid.attrs["long_name"] = "Point z location" | ||
new_grid["point_altitude"] = xr.DataArray( | ||
_point_altitude_data_factory(new_grid), dims=("z", "y", "x") | ||
) | ||
new_grid.attrs["units"] = new_grid["z"].units | ||
new_grid.attrs["long_name"] = "Point altitude" | ||
lon = _point_lon_lat_data_factory(new_grid, 0) | ||
lat = _point_lon_lat_data_factory(new_grid, 1) | ||
new_grid["point_longitude"] = xr.DataArray( | ||
lon, | ||
dims=("z", "y", "x"), | ||
) | ||
if "units" in radar_longitude.keys(): | ||
new_grid["point_longitude"].attrs["units"] = radar_longitude["units"] | ||
new_grid["point_longitude"].attrs["long_name"] = "Point longitude" | ||
new_grid["point_latitude"] = xr.DataArray(lat, dims=("z", "y", "x")) | ||
if "units" in radar_latitude.keys(): | ||
new_grid["point_latitude"].attrs["units"] = radar_latitude["units"] | ||
new_grid["point_latitude"].attrs["long_name"] = "Point latitude" | ||
add_azimuth_as_field(new_grid) | ||
add_elevation_as_field(new_grid) | ||
|
||
return new_grid | ||
|
||
|
||
def _point_data_factory(grid, coordinate): | ||
"""The function which returns the locations of all points.""" | ||
reg_x = grid["x"].values | ||
reg_y = grid["y"].values | ||
reg_z = grid["z"].values | ||
if coordinate == "x": | ||
return np.tile(reg_x, (len(reg_z), len(reg_y), 1)).swapaxes(2, 2) | ||
elif coordinate == "y": | ||
return np.tile(reg_y, (len(reg_z), len(reg_x), 1)).swapaxes(1, 2) | ||
else: | ||
assert coordinate == "z" | ||
return np.tile(reg_z, (len(reg_x), len(reg_y), 1)).swapaxes(0, 2) | ||
|
||
|
||
def _point_lon_lat_data_factory(grid, coordinate): | ||
"""The function which returns the geographic point locations.""" | ||
x = grid["point_x"].values | ||
y = grid["point_y"].values | ||
projparams = grid["projection"].attrs | ||
|
||
if "_include_lon_0_lat_0" in projparams.keys(): | ||
if projparams["_include_lon_0_lat_0"] == "true": | ||
projparams["lon_0"] = grid["origin_longitude"].values | ||
projparams["lat_0"] = grid["origin_latitude"].values | ||
|
||
geographic_coords = cartesian_to_geographic(x, y, projparams) | ||
|
||
return geographic_coords[coordinate] | ||
|
||
|
||
def _point_altitude_data_factory(grid): | ||
return grid["origin_altitude"].values[0] + grid["point_z"].values |