Skip to content

Commit

Permalink
Merge pull request #2635 from qtabs/addSPMrealingUnwarp
Browse files Browse the repository at this point in the history
[ENH] Add interface to SPM realign_unwarp
  • Loading branch information
effigies authored Aug 10, 2018
2 parents 297a24c + 1b12a27 commit fdb3227
Show file tree
Hide file tree
Showing 3 changed files with 251 additions and 4 deletions.
7 changes: 4 additions & 3 deletions nipype/interfaces/spm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,10 @@

from .base import (Info, SPMCommand, logger, no_spm, scans_for_fname,
scans_for_fnames)
from .preprocess import (FieldMap, SliceTiming, Realign, Coregister, Normalize,
Normalize12, Segment, Smooth, NewSegment, DARTEL,
DARTELNorm2MNI, CreateWarped, VBMSegment)
from .preprocess import (FieldMap, SliceTiming, Realign, RealignUnwarp,
Coregister, Normalize, Normalize12, Segment,
Smooth, NewSegment, DARTEL, DARTELNorm2MNI,
CreateWarped, VBMSegment)
from .model import (Level1Design, EstimateModel, EstimateContrast, Threshold,
OneSampleTTestDesign, TwoSampleTTestDesign,
PairedTTestDesign, MultipleRegressionDesign)
Expand Down
248 changes: 247 additions & 1 deletion nipype/interfaces/spm/preprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
from ...utils.filemanip import (fname_presuffix, ensure_list,
simplify_list, split_filename)
from ..base import (OutputMultiPath, TraitedSpec, isdefined,
traits, InputMultiPath, File, Str)
traits, InputMultiPath, InputMultiObject, File, Str)
from .base import (SPMCommand, scans_for_fname, func_is_3d,
scans_for_fnames, SPMCommandInputSpec, ImageFileSPM)

Expand Down Expand Up @@ -437,6 +437,252 @@ def _list_outputs(self):
return outputs


class RealignUnwarpInputSpec(SPMCommandInputSpec):

in_files = InputMultiObject(
traits.Either(ImageFileSPM(exists=True),
traits.List(ImageFileSPM(exists=True))),
field='data.scans',
mandatory=True,
copyfile=True,
desc='list of filenames to realign and unwarp')
phase_map = File(
field='data.pmscan',
desc='Voxel displacement map to use in unwarping. Unlike SPM standard '
'behaviour, the same map will be used for all sessions',
copyfile=False)
quality = traits.Range(
low=0.0,
high=1.0,
field='eoptions.quality',
desc='0.1 = fast, 1.0 = precise')
fwhm = traits.Range(
low=0.0,
field='eoptions.fwhm',
desc='gaussian smoothing kernel width')
separation = traits.Range(
low=0.0,
field='eoptions.sep',
desc='sampling separation in mm')
register_to_mean = traits.Bool(
field='eoptions.rtm',
desc='Indicate whether realignment is done to the mean image')
weight_img = File(
exists=True,
field='eoptions.weight',
desc='filename of weighting image')
interp = traits.Range(
low=0,
high=7,
field='eoptions.einterp',
desc='degree of b-spline used for interpolation')
wrap = traits.List(
traits.Int(),
minlen=3,
maxlen=3,
field='eoptions.ewrap',
desc='Check if interpolation should wrap in [x,y,z]')
est_basis_func = traits.List(
traits.Int(),
minlen=2,
maxlen=2,
field='uweoptions.basfcn',
desc='Number of basis functions to use for each dimension')
est_reg_order = traits.Range(
low=0,
high=3,
field='uweoptions.regorder',
desc=('This parameter determines how to balance the compromise between likelihood '
'maximization and smoothness maximization of the estimated field.'))
est_reg_factor = traits.ListInt(
[100000],
field='uweoptions.lambda',
minlen=1,
maxlen=1,
usedefault=True,
desc='Regularisation factor. Default: 100000 (medium).')
est_jacobian_deformations = traits.Bool(
field='uweoptions.jm',
desc=('Jacobian deformations. In theory a good idea to include them, '
' in practice a bad idea. Default: No.'))
est_first_order_effects = traits.List(
traits.Int(),
minlen=1,
maxlen=6,
field='uweoptions.fot',
desc='First order effects should only depend on pitch and roll, i.e. [4 5]')
est_second_order_effects = traits.List(
traits.Int(),
minlen=1,
maxlen=6,
field='uweoptions.sot',
desc='List of second order terms to model second derivatives of.')
est_unwarp_fwhm = traits.Range(
low=0.0,
field='uweoptions.uwfwhm',
desc='gaussian smoothing kernel width for unwarp')
est_re_est_mov_par = traits.Bool(
field='uweoptions.rem',
desc='Re-estimate movement parameters at each unwarping iteration.')
est_num_of_interations = traits.ListInt(
[5],
field='uweoptions.noi',
minlen=1,
maxlen=1,
usedfault=True,
desc='Number of iterations.')
est_taylor_expansion_point = traits.String(
'Average',
field='uweoptions.expround',
usedefault=True,
desc='Point in position space to perform Taylor-expansion around.')
reslice_which = traits.ListInt(
[2, 1],
field='uwroptions.uwwhich',
minlen=2,
maxlen=2,
usedefault=True,
desc='determines which images to reslice')
reslice_interp = traits.Range(
low=0,
high=7,
field='uwroptions.rinterp',
desc='degree of b-spline used for interpolation')
reslice_wrap = traits.List(
traits.Int(),
minlen=3,
maxlen=3,
field='uwroptions.wrap',
desc='Check if interpolation should wrap in [x,y,z]')
reslice_mask = traits.Bool(
field='uwroptions.mask',
desc='True/False mask output image')
out_prefix = traits.String(
'u',
field='uwroptions.prefix',
usedefault=True,
desc='realigned and unwarped output prefix')


class RealignUnwarpOutputSpec(TraitedSpec):
mean_image = File(exists=True, desc='Mean image file from the realignment & unwarping')
modified_in_files = OutputMultiPath(
traits.Either(traits.List(File(exists=True)), File(exists=True)),
desc=('Copies of all files passed to '
'in_files. Headers will have '
'been modified to align all '
'images with the first, or '
'optionally to first do that, '
'extract a mean image, and '
're-align to that mean image.'))
realigned_unwarped_files = OutputMultiPath(
traits.Either(traits.List(File(exists=True)), File(exists=True)),
desc='Realigned and unwarped files written to disc.')
realignment_parameters = OutputMultiPath(
File(exists=True),
desc='Estimated translation and rotation parameters')


class RealignUnwarp(SPMCommand):
"""Use spm_uw_estimate for estimating within subject registration and unwarping
of time series. Function accepts only one single field map. If in_files is a
list of files they will be treated as separate sessions but associated to the
same fieldmap.
http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#page=31
Examples
--------
>>> import nipype.interfaces.spm as spm
>>> realignUnwarp = spm.RealignUnwarp()
>>> realignUnwarp.inputs.in_files = ['functional.nii', 'functional2.nii']
>>> realignUnwarp.inputs.phase_map = 'voxeldisplacemap.vdm'
>>> realignUnwarp.inputs.register_to_mean = True
>>> realignUnwarp.run() # doctest: +SKIP
"""

input_spec = RealignUnwarpInputSpec
output_spec = RealignUnwarpOutputSpec

_jobtype = 'spatial'
_jobname = 'realignunwarp'

def _format_arg(self, opt, spec, val):
"""Convert input to appropriate format for spm
"""
if opt == 'in_files':
return scans_for_fnames(ensure_list(val),
keep4d=False,
separate_sessions=True)
return super(RealignUnwarp, self)._format_arg(opt, spec, val)


def _parse_inputs(self, skip=()):

spmdict = super(RealignUnwarp, self)._parse_inputs(skip=())[0]

if isdefined(self.inputs.phase_map):
pmscan = spmdict['data']['pmscan']
else:
pmscan = ''

if isdefined(self.inputs.in_files):
if isinstance(self.inputs.in_files, list):
data = [dict(scans = sess, pmscan = pmscan)
for sess in spmdict['data']['scans']]
else:
data = [dict(scans = spmdict['data']['scans'], pmscan = pmscan)]

spmdict['data'] = data

return [spmdict]


def _list_outputs(self):
outputs = self._outputs().get()
resliced_all = self.inputs.reslice_which[0] > 0
resliced_mean = self.inputs.reslice_which[1] > 0

if isdefined(self.inputs.in_files):
outputs['realignment_parameters'] = []
for imgf in self.inputs.in_files:
if isinstance(imgf, list):
tmp_imgf = imgf[0]
else:
tmp_imgf = imgf
outputs['realignment_parameters'].append(fname_presuffix(tmp_imgf,
prefix='rp_',
suffix='.txt',
use_ext=False))
if not isinstance(imgf, list) and func_is_3d(imgf):
break

if isinstance(self.inputs.in_files[0], list):
first_image = self.inputs.in_files[0][0]
else:
first_image = self.inputs.in_files[0]

if resliced_mean:
outputs['mean_image'] = fname_presuffix(first_image, prefix='meanu')

if resliced_all:
outputs['realigned_unwarped_files'] = []
for idx, imgf in enumerate(ensure_list(self.inputs.in_files)):
realigned_run = []
if isinstance(imgf, list):
for i, inner_imgf in enumerate(ensure_list(imgf)):
newfile = fname_presuffix(inner_imgf,
prefix=self.inputs.out_prefix)
realigned_run.append(newfile)
else:
realigned_run = fname_presuffix(imgf,
prefix=self.inputs.out_prefix)
outputs['realigned_unwarped_files'].append(realigned_run)
return outputs


class CoregisterInputSpec(SPMCommandInputSpec):
target = ImageFileSPM(
exists=True,
Expand Down
Empty file.

0 comments on commit fdb3227

Please sign in to comment.