Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

include nac conversion workflow #406

Merged
merged 1 commit into from
Dec 10, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 69 additions & 4 deletions modules/local/templates/mtx_to_h5ad_kallisto.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ def dump_versions():
features=glob.glob("${inputs}/*.genes.txt")[0],
)

else:
elif "${params.kb_workflow}" == "lamanno":
spliced = _mtx_to_adata(
matrix=glob.glob("${inputs}/spliced*.mtx")[0],
barcodes=glob.glob("${inputs}/spliced*.barcodes.txt")[0],
Expand All @@ -103,15 +103,15 @@ def dump_versions():
# The barcodes of spliced / non-spliced are not necessarily the same.
# We fill the missing barcodes with zeros
all_barcodes = list(set(unspliced.obs_names) | set(spliced.obs_names))
missing_spliced = list(set(unspliced.obs_names) - set(spliced.obs_names))
missing_unspliced = list(set(spliced.obs_names) - set(unspliced.obs_names))
missing_spliced = list(set(all_barcodes) - set(spliced.obs_names))
missing_unspliced = list(set(all_barcodes) - set(unspliced.obs_names))
ad_missing_spliced = AnnData(
X=csr_matrix((len(missing_spliced), spliced.shape[1])),
obs=pd.DataFrame(index=missing_spliced),
var=spliced.var,
)
ad_missing_unspliced = AnnData(
X=csr_matrix((len(missing_unspliced), spliced.shape[1])),
X=csr_matrix((len(missing_unspliced), unspliced.shape[1])),
obs=pd.DataFrame(index=missing_unspliced),
var=unspliced.var,
)
Expand All @@ -132,7 +132,72 @@ def dump_versions():
var=pd.DataFrame(index=spliced.var_names),
)

elif "${params.kb_workflow}" == "nac":
barcodes = glob.glob("${inputs}/*.barcodes.txt")[0]
features = glob.glob("${inputs}/*.genes.txt")[0]

nascent = _mtx_to_adata(
matrix=glob.glob("${inputs}/*nascent.mtx")[0],
barcodes=barcodes,
features=features,
)
ambiguous = _mtx_to_adata(
matrix=glob.glob("${inputs}/*ambiguous.mtx")[0],
barcodes=barcodes,
features=features,
)
mature = _mtx_to_adata(
matrix=glob.glob("${inputs}/*mature.mtx")[0],
barcodes=barcodes,
features=features,
)

# The barcodes of nascent / mature / ambiguous are not necessarily the same.
# We fill the missing barcodes with zeros
all_barcodes = list(set(nascent.obs_names) | set(mature.obs_names) | set(ambiguous.obs_names))
missing_nascent = list(set(all_barcodes) - set(nascent.obs_names))
missing_mature = list(set(all_barcodes) - set(mature.obs_names))
missing_ambiguous = list(set(all_barcodes) - set(ambiguous.obs_names))

ad_missing_nascent = AnnData(
X=csr_matrix((len(missing_nascent), nascent.shape[1])),
obs=pd.DataFrame(index=missing_nascent),
var=nascent.var,
)
ad_missing_ambiguous = AnnData(
X=csr_matrix((len(missing_ambiguous), ambiguous.shape[1])),
obs=pd.DataFrame(index=missing_ambiguous),
var=ambiguous.var,
)
ad_missing_mature = AnnData(
X=csr_matrix((len(missing_mature), mature.shape[1])),
obs=pd.DataFrame(index=missing_mature),
var=mature.var,
)

nascent = concat_ad([nascent, ad_missing_nascent], join="outer")[
all_barcodes, :
]
ambiguous = concat_ad([ambiguous, ad_missing_ambiguous], join="outer")[
all_barcodes, :
]
mature = concat_ad([mature, ad_missing_mature], join="outer")[
all_barcodes, :
]

assert np.all(nascent.var_names == ambiguous.var_names)
assert np.all(mature.var_names == ambiguous.var_names)

adata = AnnData(
X=nascent.X + ambiguous.X + mature.X,
layers={"nascent": nascent.X, "ambiguous": ambiguous.X, "mature": mature.X},
obs=pd.DataFrame(index=all_barcodes),
var=pd.DataFrame(index=nascent.var_names),
)

#
# out of the conditional: snippet for both standard and non-standard workflows
#

# finalize generated adata object
_add_metadata(adata, t2g="${txp2gene}", sample="${meta.id}")
Expand Down
Loading