Implementations of transformers based models for different vision tasks
- Install from PyPI
pip install vistrans
- Install from Anaconda
conda install -c nachiket273 vistrans
Minor fixes to fix issues with existing models.
Pretrained Pytorch Bottleneck Transformers for Visual Recognition including following
- botnet50
- botnet101
- botnet152
Implementation based off Official Tensorflow Implementation
pip install vistrans
1) List Pretrained Models.
```Python
from vistrans import BotNet
BotNet.list_pretrained()
- Create Pretrained Models.
from vistrans import BotNet
model = BotNet.create_pretrained(name, img_size, in_ch, num_classes,
n_heads, pos_enc_type)
- Create Custom Model
from vistrans import BotNet
model = BotNet.create_model(layers, img_size, in_ch, num_classes, groups,
norm_layer, n_heads, pos_enc_type)
Pretrained Pytorch Vision Transformer Models including following
- vit_s16_224
- vit_b16_224
- vit_b16_384
- vit_b32_384
- vit_l16_224
- vit_l16_384
- vit_l32_384
Implementation based off official jax repository and timm's implementation
- List Pretrained Models.
from vistrans import VisionTransformer
VisionTransformer.list_pretrained()
- Create Pretrained Models.
from vistrans import VisionTransformer
model = VisionTransformer.create_pretrained(name, img_size, in_ch, num_classes)
- Create Custom Model
from vistrans import VisionTransformer
model = VisionTransformer.create_model(img_size, patch_size, in_ch, num_classes,
embed_dim, depth, num_heads, mlp_ratio,
drop_rate, attention_drop_rate, hybrid,
norm_layer, bias)